mtrand.pyi 19 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571
  1. import builtins
  2. from collections.abc import Callable
  3. from typing import Any, Union, overload, Literal
  4. from numpy import (
  5. bool_,
  6. dtype,
  7. float32,
  8. float64,
  9. int8,
  10. int16,
  11. int32,
  12. int64,
  13. int_,
  14. ndarray,
  15. uint,
  16. uint8,
  17. uint16,
  18. uint32,
  19. uint64,
  20. )
  21. from numpy.random.bit_generator import BitGenerator
  22. from numpy._typing import (
  23. ArrayLike,
  24. _ArrayLikeFloat_co,
  25. _ArrayLikeInt_co,
  26. _DoubleCodes,
  27. _DTypeLikeBool,
  28. _DTypeLikeInt,
  29. _DTypeLikeUInt,
  30. _Float32Codes,
  31. _Float64Codes,
  32. _Int8Codes,
  33. _Int16Codes,
  34. _Int32Codes,
  35. _Int64Codes,
  36. _IntCodes,
  37. _ShapeLike,
  38. _SingleCodes,
  39. _SupportsDType,
  40. _UInt8Codes,
  41. _UInt16Codes,
  42. _UInt32Codes,
  43. _UInt64Codes,
  44. _UIntCodes,
  45. )
  46. _DTypeLikeFloat32 = Union[
  47. dtype[float32],
  48. _SupportsDType[dtype[float32]],
  49. type[float32],
  50. _Float32Codes,
  51. _SingleCodes,
  52. ]
  53. _DTypeLikeFloat64 = Union[
  54. dtype[float64],
  55. _SupportsDType[dtype[float64]],
  56. type[float],
  57. type[float64],
  58. _Float64Codes,
  59. _DoubleCodes,
  60. ]
  61. class RandomState:
  62. _bit_generator: BitGenerator
  63. def __init__(self, seed: None | _ArrayLikeInt_co | BitGenerator = ...) -> None: ...
  64. def __repr__(self) -> str: ...
  65. def __str__(self) -> str: ...
  66. def __getstate__(self) -> dict[str, Any]: ...
  67. def __setstate__(self, state: dict[str, Any]) -> None: ...
  68. def __reduce__(self) -> tuple[Callable[[str], RandomState], tuple[str], dict[str, Any]]: ...
  69. def seed(self, seed: None | _ArrayLikeFloat_co = ...) -> None: ...
  70. @overload
  71. def get_state(self, legacy: Literal[False] = ...) -> dict[str, Any]: ...
  72. @overload
  73. def get_state(
  74. self, legacy: Literal[True] = ...
  75. ) -> dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float]: ...
  76. def set_state(
  77. self, state: dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float]
  78. ) -> None: ...
  79. @overload
  80. def random_sample(self, size: None = ...) -> float: ... # type: ignore[misc]
  81. @overload
  82. def random_sample(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
  83. @overload
  84. def random(self, size: None = ...) -> float: ... # type: ignore[misc]
  85. @overload
  86. def random(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
  87. @overload
  88. def beta(self, a: float, b: float, size: None = ...) -> float: ... # type: ignore[misc]
  89. @overload
  90. def beta(
  91. self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  92. ) -> ndarray[Any, dtype[float64]]: ...
  93. @overload
  94. def exponential(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  95. @overload
  96. def exponential(
  97. self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
  98. ) -> ndarray[Any, dtype[float64]]: ...
  99. @overload
  100. def standard_exponential(self, size: None = ...) -> float: ... # type: ignore[misc]
  101. @overload
  102. def standard_exponential(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
  103. @overload
  104. def tomaxint(self, size: None = ...) -> int: ... # type: ignore[misc]
  105. @overload
  106. def tomaxint(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[int_]]: ...
  107. @overload
  108. def randint( # type: ignore[misc]
  109. self,
  110. low: int,
  111. high: None | int = ...,
  112. ) -> int: ...
  113. @overload
  114. def randint( # type: ignore[misc]
  115. self,
  116. low: int,
  117. high: None | int = ...,
  118. size: None = ...,
  119. dtype: _DTypeLikeBool = ...,
  120. ) -> bool: ...
  121. @overload
  122. def randint( # type: ignore[misc]
  123. self,
  124. low: int,
  125. high: None | int = ...,
  126. size: None = ...,
  127. dtype: _DTypeLikeInt | _DTypeLikeUInt = ...,
  128. ) -> int: ...
  129. @overload
  130. def randint( # type: ignore[misc]
  131. self,
  132. low: _ArrayLikeInt_co,
  133. high: None | _ArrayLikeInt_co = ...,
  134. size: None | _ShapeLike = ...,
  135. ) -> ndarray[Any, dtype[int_]]: ...
  136. @overload
  137. def randint( # type: ignore[misc]
  138. self,
  139. low: _ArrayLikeInt_co,
  140. high: None | _ArrayLikeInt_co = ...,
  141. size: None | _ShapeLike = ...,
  142. dtype: _DTypeLikeBool = ...,
  143. ) -> ndarray[Any, dtype[bool_]]: ...
  144. @overload
  145. def randint( # type: ignore[misc]
  146. self,
  147. low: _ArrayLikeInt_co,
  148. high: None | _ArrayLikeInt_co = ...,
  149. size: None | _ShapeLike = ...,
  150. dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ...,
  151. ) -> ndarray[Any, dtype[int8]]: ...
  152. @overload
  153. def randint( # type: ignore[misc]
  154. self,
  155. low: _ArrayLikeInt_co,
  156. high: None | _ArrayLikeInt_co = ...,
  157. size: None | _ShapeLike = ...,
  158. dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ...,
  159. ) -> ndarray[Any, dtype[int16]]: ...
  160. @overload
  161. def randint( # type: ignore[misc]
  162. self,
  163. low: _ArrayLikeInt_co,
  164. high: None | _ArrayLikeInt_co = ...,
  165. size: None | _ShapeLike = ...,
  166. dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ...,
  167. ) -> ndarray[Any, dtype[int32]]: ...
  168. @overload
  169. def randint( # type: ignore[misc]
  170. self,
  171. low: _ArrayLikeInt_co,
  172. high: None | _ArrayLikeInt_co = ...,
  173. size: None | _ShapeLike = ...,
  174. dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ...,
  175. ) -> ndarray[Any, dtype[int64]]: ...
  176. @overload
  177. def randint( # type: ignore[misc]
  178. self,
  179. low: _ArrayLikeInt_co,
  180. high: None | _ArrayLikeInt_co = ...,
  181. size: None | _ShapeLike = ...,
  182. dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ...,
  183. ) -> ndarray[Any, dtype[uint8]]: ...
  184. @overload
  185. def randint( # type: ignore[misc]
  186. self,
  187. low: _ArrayLikeInt_co,
  188. high: None | _ArrayLikeInt_co = ...,
  189. size: None | _ShapeLike = ...,
  190. dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ...,
  191. ) -> ndarray[Any, dtype[uint16]]: ...
  192. @overload
  193. def randint( # type: ignore[misc]
  194. self,
  195. low: _ArrayLikeInt_co,
  196. high: None | _ArrayLikeInt_co = ...,
  197. size: None | _ShapeLike = ...,
  198. dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ...,
  199. ) -> ndarray[Any, dtype[uint32]]: ...
  200. @overload
  201. def randint( # type: ignore[misc]
  202. self,
  203. low: _ArrayLikeInt_co,
  204. high: None | _ArrayLikeInt_co = ...,
  205. size: None | _ShapeLike = ...,
  206. dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ...,
  207. ) -> ndarray[Any, dtype[uint64]]: ...
  208. @overload
  209. def randint( # type: ignore[misc]
  210. self,
  211. low: _ArrayLikeInt_co,
  212. high: None | _ArrayLikeInt_co = ...,
  213. size: None | _ShapeLike = ...,
  214. dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ...,
  215. ) -> ndarray[Any, dtype[int_]]: ...
  216. @overload
  217. def randint( # type: ignore[misc]
  218. self,
  219. low: _ArrayLikeInt_co,
  220. high: None | _ArrayLikeInt_co = ...,
  221. size: None | _ShapeLike = ...,
  222. dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ...,
  223. ) -> ndarray[Any, dtype[uint]]: ...
  224. def bytes(self, length: int) -> builtins.bytes: ...
  225. @overload
  226. def choice(
  227. self,
  228. a: int,
  229. size: None = ...,
  230. replace: bool = ...,
  231. p: None | _ArrayLikeFloat_co = ...,
  232. ) -> int: ...
  233. @overload
  234. def choice(
  235. self,
  236. a: int,
  237. size: _ShapeLike = ...,
  238. replace: bool = ...,
  239. p: None | _ArrayLikeFloat_co = ...,
  240. ) -> ndarray[Any, dtype[int_]]: ...
  241. @overload
  242. def choice(
  243. self,
  244. a: ArrayLike,
  245. size: None = ...,
  246. replace: bool = ...,
  247. p: None | _ArrayLikeFloat_co = ...,
  248. ) -> Any: ...
  249. @overload
  250. def choice(
  251. self,
  252. a: ArrayLike,
  253. size: _ShapeLike = ...,
  254. replace: bool = ...,
  255. p: None | _ArrayLikeFloat_co = ...,
  256. ) -> ndarray[Any, Any]: ...
  257. @overload
  258. def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  259. @overload
  260. def uniform(
  261. self,
  262. low: _ArrayLikeFloat_co = ...,
  263. high: _ArrayLikeFloat_co = ...,
  264. size: None | _ShapeLike = ...,
  265. ) -> ndarray[Any, dtype[float64]]: ...
  266. @overload
  267. def rand(self) -> float: ...
  268. @overload
  269. def rand(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
  270. @overload
  271. def randn(self) -> float: ...
  272. @overload
  273. def randn(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
  274. @overload
  275. def random_integers(self, low: int, high: None | int = ..., size: None = ...) -> int: ... # type: ignore[misc]
  276. @overload
  277. def random_integers(
  278. self,
  279. low: _ArrayLikeInt_co,
  280. high: None | _ArrayLikeInt_co = ...,
  281. size: None | _ShapeLike = ...,
  282. ) -> ndarray[Any, dtype[int_]]: ...
  283. @overload
  284. def standard_normal(self, size: None = ...) -> float: ... # type: ignore[misc]
  285. @overload
  286. def standard_normal( # type: ignore[misc]
  287. self, size: _ShapeLike = ...
  288. ) -> ndarray[Any, dtype[float64]]: ...
  289. @overload
  290. def normal(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  291. @overload
  292. def normal(
  293. self,
  294. loc: _ArrayLikeFloat_co = ...,
  295. scale: _ArrayLikeFloat_co = ...,
  296. size: None | _ShapeLike = ...,
  297. ) -> ndarray[Any, dtype[float64]]: ...
  298. @overload
  299. def standard_gamma( # type: ignore[misc]
  300. self,
  301. shape: float,
  302. size: None = ...,
  303. ) -> float: ...
  304. @overload
  305. def standard_gamma(
  306. self,
  307. shape: _ArrayLikeFloat_co,
  308. size: None | _ShapeLike = ...,
  309. ) -> ndarray[Any, dtype[float64]]: ...
  310. @overload
  311. def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  312. @overload
  313. def gamma(
  314. self,
  315. shape: _ArrayLikeFloat_co,
  316. scale: _ArrayLikeFloat_co = ...,
  317. size: None | _ShapeLike = ...,
  318. ) -> ndarray[Any, dtype[float64]]: ...
  319. @overload
  320. def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ... # type: ignore[misc]
  321. @overload
  322. def f(
  323. self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  324. ) -> ndarray[Any, dtype[float64]]: ...
  325. @overload
  326. def noncentral_f(self, dfnum: float, dfden: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc]
  327. @overload
  328. def noncentral_f(
  329. self,
  330. dfnum: _ArrayLikeFloat_co,
  331. dfden: _ArrayLikeFloat_co,
  332. nonc: _ArrayLikeFloat_co,
  333. size: None | _ShapeLike = ...,
  334. ) -> ndarray[Any, dtype[float64]]: ...
  335. @overload
  336. def chisquare(self, df: float, size: None = ...) -> float: ... # type: ignore[misc]
  337. @overload
  338. def chisquare(
  339. self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  340. ) -> ndarray[Any, dtype[float64]]: ...
  341. @overload
  342. def noncentral_chisquare(self, df: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc]
  343. @overload
  344. def noncentral_chisquare(
  345. self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  346. ) -> ndarray[Any, dtype[float64]]: ...
  347. @overload
  348. def standard_t(self, df: float, size: None = ...) -> float: ... # type: ignore[misc]
  349. @overload
  350. def standard_t(
  351. self, df: _ArrayLikeFloat_co, size: None = ...
  352. ) -> ndarray[Any, dtype[float64]]: ...
  353. @overload
  354. def standard_t(
  355. self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
  356. ) -> ndarray[Any, dtype[float64]]: ...
  357. @overload
  358. def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ... # type: ignore[misc]
  359. @overload
  360. def vonmises(
  361. self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  362. ) -> ndarray[Any, dtype[float64]]: ...
  363. @overload
  364. def pareto(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
  365. @overload
  366. def pareto(
  367. self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  368. ) -> ndarray[Any, dtype[float64]]: ...
  369. @overload
  370. def weibull(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
  371. @overload
  372. def weibull(
  373. self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  374. ) -> ndarray[Any, dtype[float64]]: ...
  375. @overload
  376. def power(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
  377. @overload
  378. def power(
  379. self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  380. ) -> ndarray[Any, dtype[float64]]: ...
  381. @overload
  382. def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc]
  383. @overload
  384. def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
  385. @overload
  386. def laplace(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  387. @overload
  388. def laplace(
  389. self,
  390. loc: _ArrayLikeFloat_co = ...,
  391. scale: _ArrayLikeFloat_co = ...,
  392. size: None | _ShapeLike = ...,
  393. ) -> ndarray[Any, dtype[float64]]: ...
  394. @overload
  395. def gumbel(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  396. @overload
  397. def gumbel(
  398. self,
  399. loc: _ArrayLikeFloat_co = ...,
  400. scale: _ArrayLikeFloat_co = ...,
  401. size: None | _ShapeLike = ...,
  402. ) -> ndarray[Any, dtype[float64]]: ...
  403. @overload
  404. def logistic(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  405. @overload
  406. def logistic(
  407. self,
  408. loc: _ArrayLikeFloat_co = ...,
  409. scale: _ArrayLikeFloat_co = ...,
  410. size: None | _ShapeLike = ...,
  411. ) -> ndarray[Any, dtype[float64]]: ...
  412. @overload
  413. def lognormal(self, mean: float = ..., sigma: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  414. @overload
  415. def lognormal(
  416. self,
  417. mean: _ArrayLikeFloat_co = ...,
  418. sigma: _ArrayLikeFloat_co = ...,
  419. size: None | _ShapeLike = ...,
  420. ) -> ndarray[Any, dtype[float64]]: ...
  421. @overload
  422. def rayleigh(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
  423. @overload
  424. def rayleigh(
  425. self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
  426. ) -> ndarray[Any, dtype[float64]]: ...
  427. @overload
  428. def wald(self, mean: float, scale: float, size: None = ...) -> float: ... # type: ignore[misc]
  429. @overload
  430. def wald(
  431. self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  432. ) -> ndarray[Any, dtype[float64]]: ...
  433. @overload
  434. def triangular(self, left: float, mode: float, right: float, size: None = ...) -> float: ... # type: ignore[misc]
  435. @overload
  436. def triangular(
  437. self,
  438. left: _ArrayLikeFloat_co,
  439. mode: _ArrayLikeFloat_co,
  440. right: _ArrayLikeFloat_co,
  441. size: None | _ShapeLike = ...,
  442. ) -> ndarray[Any, dtype[float64]]: ...
  443. @overload
  444. def binomial(self, n: int, p: float, size: None = ...) -> int: ... # type: ignore[misc]
  445. @overload
  446. def binomial(
  447. self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  448. ) -> ndarray[Any, dtype[int_]]: ...
  449. @overload
  450. def negative_binomial(self, n: float, p: float, size: None = ...) -> int: ... # type: ignore[misc]
  451. @overload
  452. def negative_binomial(
  453. self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  454. ) -> ndarray[Any, dtype[int_]]: ...
  455. @overload
  456. def poisson(self, lam: float = ..., size: None = ...) -> int: ... # type: ignore[misc]
  457. @overload
  458. def poisson(
  459. self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
  460. ) -> ndarray[Any, dtype[int_]]: ...
  461. @overload
  462. def zipf(self, a: float, size: None = ...) -> int: ... # type: ignore[misc]
  463. @overload
  464. def zipf(
  465. self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  466. ) -> ndarray[Any, dtype[int_]]: ...
  467. @overload
  468. def geometric(self, p: float, size: None = ...) -> int: ... # type: ignore[misc]
  469. @overload
  470. def geometric(
  471. self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  472. ) -> ndarray[Any, dtype[int_]]: ...
  473. @overload
  474. def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ... # type: ignore[misc]
  475. @overload
  476. def hypergeometric(
  477. self,
  478. ngood: _ArrayLikeInt_co,
  479. nbad: _ArrayLikeInt_co,
  480. nsample: _ArrayLikeInt_co,
  481. size: None | _ShapeLike = ...,
  482. ) -> ndarray[Any, dtype[int_]]: ...
  483. @overload
  484. def logseries(self, p: float, size: None = ...) -> int: ... # type: ignore[misc]
  485. @overload
  486. def logseries(
  487. self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  488. ) -> ndarray[Any, dtype[int_]]: ...
  489. def multivariate_normal(
  490. self,
  491. mean: _ArrayLikeFloat_co,
  492. cov: _ArrayLikeFloat_co,
  493. size: None | _ShapeLike = ...,
  494. check_valid: Literal["warn", "raise", "ignore"] = ...,
  495. tol: float = ...,
  496. ) -> ndarray[Any, dtype[float64]]: ...
  497. def multinomial(
  498. self, n: _ArrayLikeInt_co, pvals: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  499. ) -> ndarray[Any, dtype[int_]]: ...
  500. def dirichlet(
  501. self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
  502. ) -> ndarray[Any, dtype[float64]]: ...
  503. def shuffle(self, x: ArrayLike) -> None: ...
  504. @overload
  505. def permutation(self, x: int) -> ndarray[Any, dtype[int_]]: ...
  506. @overload
  507. def permutation(self, x: ArrayLike) -> ndarray[Any, Any]: ...
  508. _rand: RandomState
  509. beta = _rand.beta
  510. binomial = _rand.binomial
  511. bytes = _rand.bytes
  512. chisquare = _rand.chisquare
  513. choice = _rand.choice
  514. dirichlet = _rand.dirichlet
  515. exponential = _rand.exponential
  516. f = _rand.f
  517. gamma = _rand.gamma
  518. get_state = _rand.get_state
  519. geometric = _rand.geometric
  520. gumbel = _rand.gumbel
  521. hypergeometric = _rand.hypergeometric
  522. laplace = _rand.laplace
  523. logistic = _rand.logistic
  524. lognormal = _rand.lognormal
  525. logseries = _rand.logseries
  526. multinomial = _rand.multinomial
  527. multivariate_normal = _rand.multivariate_normal
  528. negative_binomial = _rand.negative_binomial
  529. noncentral_chisquare = _rand.noncentral_chisquare
  530. noncentral_f = _rand.noncentral_f
  531. normal = _rand.normal
  532. pareto = _rand.pareto
  533. permutation = _rand.permutation
  534. poisson = _rand.poisson
  535. power = _rand.power
  536. rand = _rand.rand
  537. randint = _rand.randint
  538. randn = _rand.randn
  539. random = _rand.random
  540. random_integers = _rand.random_integers
  541. random_sample = _rand.random_sample
  542. rayleigh = _rand.rayleigh
  543. seed = _rand.seed
  544. set_state = _rand.set_state
  545. shuffle = _rand.shuffle
  546. standard_cauchy = _rand.standard_cauchy
  547. standard_exponential = _rand.standard_exponential
  548. standard_gamma = _rand.standard_gamma
  549. standard_normal = _rand.standard_normal
  550. standard_t = _rand.standard_t
  551. triangular = _rand.triangular
  552. uniform = _rand.uniform
  553. vonmises = _rand.vonmises
  554. wald = _rand.wald
  555. weibull = _rand.weibull
  556. zipf = _rand.zipf
  557. # Two legacy that are trivial wrappers around random_sample
  558. sample = _rand.random_sample
  559. ranf = _rand.random_sample
  560. def set_bit_generator(bitgen: BitGenerator) -> None:
  561. ...
  562. def get_bit_generator() -> BitGenerator:
  563. ...