123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571 |
- import builtins
- from collections.abc import Callable
- from typing import Any, Union, overload, Literal
- from numpy import (
- bool_,
- dtype,
- float32,
- float64,
- int8,
- int16,
- int32,
- int64,
- int_,
- ndarray,
- uint,
- uint8,
- uint16,
- uint32,
- uint64,
- )
- from numpy.random.bit_generator import BitGenerator
- from numpy._typing import (
- ArrayLike,
- _ArrayLikeFloat_co,
- _ArrayLikeInt_co,
- _DoubleCodes,
- _DTypeLikeBool,
- _DTypeLikeInt,
- _DTypeLikeUInt,
- _Float32Codes,
- _Float64Codes,
- _Int8Codes,
- _Int16Codes,
- _Int32Codes,
- _Int64Codes,
- _IntCodes,
- _ShapeLike,
- _SingleCodes,
- _SupportsDType,
- _UInt8Codes,
- _UInt16Codes,
- _UInt32Codes,
- _UInt64Codes,
- _UIntCodes,
- )
- _DTypeLikeFloat32 = Union[
- dtype[float32],
- _SupportsDType[dtype[float32]],
- type[float32],
- _Float32Codes,
- _SingleCodes,
- ]
- _DTypeLikeFloat64 = Union[
- dtype[float64],
- _SupportsDType[dtype[float64]],
- type[float],
- type[float64],
- _Float64Codes,
- _DoubleCodes,
- ]
- class RandomState:
- _bit_generator: BitGenerator
- def __init__(self, seed: None | _ArrayLikeInt_co | BitGenerator = ...) -> None: ...
- def __repr__(self) -> str: ...
- def __str__(self) -> str: ...
- def __getstate__(self) -> dict[str, Any]: ...
- def __setstate__(self, state: dict[str, Any]) -> None: ...
- def __reduce__(self) -> tuple[Callable[[str], RandomState], tuple[str], dict[str, Any]]: ...
- def seed(self, seed: None | _ArrayLikeFloat_co = ...) -> None: ...
- @overload
- def get_state(self, legacy: Literal[False] = ...) -> dict[str, Any]: ...
- @overload
- def get_state(
- self, legacy: Literal[True] = ...
- ) -> dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float]: ...
- def set_state(
- self, state: dict[str, Any] | tuple[str, ndarray[Any, dtype[uint32]], int, int, float]
- ) -> None: ...
- @overload
- def random_sample(self, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def random_sample(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def random(self, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def random(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def beta(self, a: float, b: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def beta(
- self, a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def exponential(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def exponential(
- self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def standard_exponential(self, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def standard_exponential(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def tomaxint(self, size: None = ...) -> int: ... # type: ignore[misc]
- @overload
- def tomaxint(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[int_]]: ...
- @overload
- def randint( # type: ignore[misc]
- self,
- low: int,
- high: None | int = ...,
- ) -> int: ...
- @overload
- def randint( # type: ignore[misc]
- self,
- low: int,
- high: None | int = ...,
- size: None = ...,
- dtype: _DTypeLikeBool = ...,
- ) -> bool: ...
- @overload
- def randint( # type: ignore[misc]
- self,
- low: int,
- high: None | int = ...,
- size: None = ...,
- dtype: _DTypeLikeInt | _DTypeLikeUInt = ...,
- ) -> int: ...
- @overload
- def randint( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[int_]]: ...
- @overload
- def randint( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: _DTypeLikeBool = ...,
- ) -> ndarray[Any, dtype[bool_]]: ...
- @overload
- def randint( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: dtype[int8] | type[int8] | _Int8Codes | _SupportsDType[dtype[int8]] = ...,
- ) -> ndarray[Any, dtype[int8]]: ...
- @overload
- def randint( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: dtype[int16] | type[int16] | _Int16Codes | _SupportsDType[dtype[int16]] = ...,
- ) -> ndarray[Any, dtype[int16]]: ...
- @overload
- def randint( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: dtype[int32] | type[int32] | _Int32Codes | _SupportsDType[dtype[int32]] = ...,
- ) -> ndarray[Any, dtype[int32]]: ...
- @overload
- def randint( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: None | dtype[int64] | type[int64] | _Int64Codes | _SupportsDType[dtype[int64]] = ...,
- ) -> ndarray[Any, dtype[int64]]: ...
- @overload
- def randint( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: dtype[uint8] | type[uint8] | _UInt8Codes | _SupportsDType[dtype[uint8]] = ...,
- ) -> ndarray[Any, dtype[uint8]]: ...
- @overload
- def randint( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: dtype[uint16] | type[uint16] | _UInt16Codes | _SupportsDType[dtype[uint16]] = ...,
- ) -> ndarray[Any, dtype[uint16]]: ...
- @overload
- def randint( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: dtype[uint32] | type[uint32] | _UInt32Codes | _SupportsDType[dtype[uint32]] = ...,
- ) -> ndarray[Any, dtype[uint32]]: ...
- @overload
- def randint( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: dtype[uint64] | type[uint64] | _UInt64Codes | _SupportsDType[dtype[uint64]] = ...,
- ) -> ndarray[Any, dtype[uint64]]: ...
- @overload
- def randint( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: dtype[int_] | type[int] | type[int_] | _IntCodes | _SupportsDType[dtype[int_]] = ...,
- ) -> ndarray[Any, dtype[int_]]: ...
- @overload
- def randint( # type: ignore[misc]
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- dtype: dtype[uint] | type[uint] | _UIntCodes | _SupportsDType[dtype[uint]] = ...,
- ) -> ndarray[Any, dtype[uint]]: ...
- def bytes(self, length: int) -> builtins.bytes: ...
- @overload
- def choice(
- self,
- a: int,
- size: None = ...,
- replace: bool = ...,
- p: None | _ArrayLikeFloat_co = ...,
- ) -> int: ...
- @overload
- def choice(
- self,
- a: int,
- size: _ShapeLike = ...,
- replace: bool = ...,
- p: None | _ArrayLikeFloat_co = ...,
- ) -> ndarray[Any, dtype[int_]]: ...
- @overload
- def choice(
- self,
- a: ArrayLike,
- size: None = ...,
- replace: bool = ...,
- p: None | _ArrayLikeFloat_co = ...,
- ) -> Any: ...
- @overload
- def choice(
- self,
- a: ArrayLike,
- size: _ShapeLike = ...,
- replace: bool = ...,
- p: None | _ArrayLikeFloat_co = ...,
- ) -> ndarray[Any, Any]: ...
- @overload
- def uniform(self, low: float = ..., high: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def uniform(
- self,
- low: _ArrayLikeFloat_co = ...,
- high: _ArrayLikeFloat_co = ...,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def rand(self) -> float: ...
- @overload
- def rand(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def randn(self) -> float: ...
- @overload
- def randn(self, *args: int) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def random_integers(self, low: int, high: None | int = ..., size: None = ...) -> int: ... # type: ignore[misc]
- @overload
- def random_integers(
- self,
- low: _ArrayLikeInt_co,
- high: None | _ArrayLikeInt_co = ...,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[int_]]: ...
- @overload
- def standard_normal(self, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def standard_normal( # type: ignore[misc]
- self, size: _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def normal(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def normal(
- self,
- loc: _ArrayLikeFloat_co = ...,
- scale: _ArrayLikeFloat_co = ...,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def standard_gamma( # type: ignore[misc]
- self,
- shape: float,
- size: None = ...,
- ) -> float: ...
- @overload
- def standard_gamma(
- self,
- shape: _ArrayLikeFloat_co,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def gamma(self, shape: float, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def gamma(
- self,
- shape: _ArrayLikeFloat_co,
- scale: _ArrayLikeFloat_co = ...,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def f(self, dfnum: float, dfden: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def f(
- self, dfnum: _ArrayLikeFloat_co, dfden: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def noncentral_f(self, dfnum: float, dfden: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def noncentral_f(
- self,
- dfnum: _ArrayLikeFloat_co,
- dfden: _ArrayLikeFloat_co,
- nonc: _ArrayLikeFloat_co,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def chisquare(self, df: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def chisquare(
- self, df: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def noncentral_chisquare(self, df: float, nonc: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def noncentral_chisquare(
- self, df: _ArrayLikeFloat_co, nonc: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def standard_t(self, df: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def standard_t(
- self, df: _ArrayLikeFloat_co, size: None = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def standard_t(
- self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def vonmises(self, mu: float, kappa: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def vonmises(
- self, mu: _ArrayLikeFloat_co, kappa: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def pareto(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def pareto(
- self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def weibull(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def weibull(
- self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def power(self, a: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def power(
- self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def standard_cauchy(self, size: _ShapeLike = ...) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def laplace(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def laplace(
- self,
- loc: _ArrayLikeFloat_co = ...,
- scale: _ArrayLikeFloat_co = ...,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def gumbel(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def gumbel(
- self,
- loc: _ArrayLikeFloat_co = ...,
- scale: _ArrayLikeFloat_co = ...,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def logistic(self, loc: float = ..., scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def logistic(
- self,
- loc: _ArrayLikeFloat_co = ...,
- scale: _ArrayLikeFloat_co = ...,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def lognormal(self, mean: float = ..., sigma: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def lognormal(
- self,
- mean: _ArrayLikeFloat_co = ...,
- sigma: _ArrayLikeFloat_co = ...,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def rayleigh(self, scale: float = ..., size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def rayleigh(
- self, scale: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def wald(self, mean: float, scale: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def wald(
- self, mean: _ArrayLikeFloat_co, scale: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def triangular(self, left: float, mode: float, right: float, size: None = ...) -> float: ... # type: ignore[misc]
- @overload
- def triangular(
- self,
- left: _ArrayLikeFloat_co,
- mode: _ArrayLikeFloat_co,
- right: _ArrayLikeFloat_co,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- @overload
- def binomial(self, n: int, p: float, size: None = ...) -> int: ... # type: ignore[misc]
- @overload
- def binomial(
- self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[int_]]: ...
- @overload
- def negative_binomial(self, n: float, p: float, size: None = ...) -> int: ... # type: ignore[misc]
- @overload
- def negative_binomial(
- self, n: _ArrayLikeFloat_co, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[int_]]: ...
- @overload
- def poisson(self, lam: float = ..., size: None = ...) -> int: ... # type: ignore[misc]
- @overload
- def poisson(
- self, lam: _ArrayLikeFloat_co = ..., size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[int_]]: ...
- @overload
- def zipf(self, a: float, size: None = ...) -> int: ... # type: ignore[misc]
- @overload
- def zipf(
- self, a: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[int_]]: ...
- @overload
- def geometric(self, p: float, size: None = ...) -> int: ... # type: ignore[misc]
- @overload
- def geometric(
- self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[int_]]: ...
- @overload
- def hypergeometric(self, ngood: int, nbad: int, nsample: int, size: None = ...) -> int: ... # type: ignore[misc]
- @overload
- def hypergeometric(
- self,
- ngood: _ArrayLikeInt_co,
- nbad: _ArrayLikeInt_co,
- nsample: _ArrayLikeInt_co,
- size: None | _ShapeLike = ...,
- ) -> ndarray[Any, dtype[int_]]: ...
- @overload
- def logseries(self, p: float, size: None = ...) -> int: ... # type: ignore[misc]
- @overload
- def logseries(
- self, p: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[int_]]: ...
- def multivariate_normal(
- self,
- mean: _ArrayLikeFloat_co,
- cov: _ArrayLikeFloat_co,
- size: None | _ShapeLike = ...,
- check_valid: Literal["warn", "raise", "ignore"] = ...,
- tol: float = ...,
- ) -> ndarray[Any, dtype[float64]]: ...
- def multinomial(
- self, n: _ArrayLikeInt_co, pvals: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[int_]]: ...
- def dirichlet(
- self, alpha: _ArrayLikeFloat_co, size: None | _ShapeLike = ...
- ) -> ndarray[Any, dtype[float64]]: ...
- def shuffle(self, x: ArrayLike) -> None: ...
- @overload
- def permutation(self, x: int) -> ndarray[Any, dtype[int_]]: ...
- @overload
- def permutation(self, x: ArrayLike) -> ndarray[Any, Any]: ...
- _rand: RandomState
- beta = _rand.beta
- binomial = _rand.binomial
- bytes = _rand.bytes
- chisquare = _rand.chisquare
- choice = _rand.choice
- dirichlet = _rand.dirichlet
- exponential = _rand.exponential
- f = _rand.f
- gamma = _rand.gamma
- get_state = _rand.get_state
- geometric = _rand.geometric
- gumbel = _rand.gumbel
- hypergeometric = _rand.hypergeometric
- laplace = _rand.laplace
- logistic = _rand.logistic
- lognormal = _rand.lognormal
- logseries = _rand.logseries
- multinomial = _rand.multinomial
- multivariate_normal = _rand.multivariate_normal
- negative_binomial = _rand.negative_binomial
- noncentral_chisquare = _rand.noncentral_chisquare
- noncentral_f = _rand.noncentral_f
- normal = _rand.normal
- pareto = _rand.pareto
- permutation = _rand.permutation
- poisson = _rand.poisson
- power = _rand.power
- rand = _rand.rand
- randint = _rand.randint
- randn = _rand.randn
- random = _rand.random
- random_integers = _rand.random_integers
- random_sample = _rand.random_sample
- rayleigh = _rand.rayleigh
- seed = _rand.seed
- set_state = _rand.set_state
- shuffle = _rand.shuffle
- standard_cauchy = _rand.standard_cauchy
- standard_exponential = _rand.standard_exponential
- standard_gamma = _rand.standard_gamma
- standard_normal = _rand.standard_normal
- standard_t = _rand.standard_t
- triangular = _rand.triangular
- uniform = _rand.uniform
- vonmises = _rand.vonmises
- wald = _rand.wald
- weibull = _rand.weibull
- zipf = _rand.zipf
- # Two legacy that are trivial wrappers around random_sample
- sample = _rand.random_sample
- ranf = _rand.random_sample
- def set_bit_generator(bitgen: BitGenerator) -> None:
- ...
- def get_bit_generator() -> BitGenerator:
- ...
|