1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- #ifndef Py_CPYTHON_OBJIMPL_H
- # error "this header file must not be included directly"
- #endif
- static inline size_t _PyObject_SIZE(PyTypeObject *type) {
- return _Py_STATIC_CAST(size_t, type->tp_basicsize);
- }
- /* _PyObject_VAR_SIZE returns the number of bytes (as size_t) allocated for a
- vrbl-size object with nitems items, exclusive of gc overhead (if any). The
- value is rounded up to the closest multiple of sizeof(void *), in order to
- ensure that pointer fields at the end of the object are correctly aligned
- for the platform (this is of special importance for subclasses of, e.g.,
- str or int, so that pointers can be stored after the embedded data).
- Note that there's no memory wastage in doing this, as malloc has to
- return (at worst) pointer-aligned memory anyway.
- */
- #if ((SIZEOF_VOID_P - 1) & SIZEOF_VOID_P) != 0
- # error "_PyObject_VAR_SIZE requires SIZEOF_VOID_P be a power of 2"
- #endif
- static inline size_t _PyObject_VAR_SIZE(PyTypeObject *type, Py_ssize_t nitems) {
- size_t size = _Py_STATIC_CAST(size_t, type->tp_basicsize);
- size += _Py_STATIC_CAST(size_t, nitems) * _Py_STATIC_CAST(size_t, type->tp_itemsize);
- return _Py_SIZE_ROUND_UP(size, SIZEOF_VOID_P);
- }
- /* This example code implements an object constructor with a custom
- allocator, where PyObject_New is inlined, and shows the important
- distinction between two steps (at least):
- 1) the actual allocation of the object storage;
- 2) the initialization of the Python specific fields
- in this storage with PyObject_{Init, InitVar}.
- PyObject *
- YourObject_New(...)
- {
- PyObject *op;
- op = (PyObject *) Your_Allocator(_PyObject_SIZE(YourTypeStruct));
- if (op == NULL) {
- return PyErr_NoMemory();
- }
- PyObject_Init(op, &YourTypeStruct);
- op->ob_field = value;
- ...
- return op;
- }
- Note that in C++, the use of the new operator usually implies that
- the 1st step is performed automatically for you, so in a C++ class
- constructor you would start directly with PyObject_Init/InitVar. */
- typedef struct {
- /* user context passed as the first argument to the 2 functions */
- void *ctx;
- /* allocate an arena of size bytes */
- void* (*alloc) (void *ctx, size_t size);
- /* free an arena */
- void (*free) (void *ctx, void *ptr, size_t size);
- } PyObjectArenaAllocator;
- /* Get the arena allocator. */
- PyAPI_FUNC(void) PyObject_GetArenaAllocator(PyObjectArenaAllocator *allocator);
- /* Set the arena allocator. */
- PyAPI_FUNC(void) PyObject_SetArenaAllocator(PyObjectArenaAllocator *allocator);
- /* Test if an object implements the garbage collector protocol */
- PyAPI_FUNC(int) PyObject_IS_GC(PyObject *obj);
- /* Code built with Py_BUILD_CORE must include pycore_gc.h instead which
- defines a different _PyGC_FINALIZED() macro. */
- #ifndef Py_BUILD_CORE
- // Kept for backward compatibility with Python 3.8
- # define _PyGC_FINALIZED(o) PyObject_GC_IsFinalized(o)
- #endif
- // Test if a type supports weak references
- PyAPI_FUNC(int) PyType_SUPPORTS_WEAKREFS(PyTypeObject *type);
- PyAPI_FUNC(PyObject **) PyObject_GET_WEAKREFS_LISTPTR(PyObject *op);
- PyAPI_FUNC(PyObject *) PyUnstable_Object_GC_NewWithExtraData(PyTypeObject *,
- size_t);
|