1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615 |
- from typing import Tuple as tTuple
- from sympy.calculus.singularities import is_decreasing
- from sympy.calculus.accumulationbounds import AccumulationBounds
- from .expr_with_intlimits import ExprWithIntLimits
- from .expr_with_limits import AddWithLimits
- from .gosper import gosper_sum
- from sympy.core.expr import Expr
- from sympy.core.add import Add
- from sympy.core.containers import Tuple
- from sympy.core.function import Derivative, expand
- from sympy.core.mul import Mul
- from sympy.core.numbers import Float
- from sympy.core.relational import Eq
- from sympy.core.singleton import S
- from sympy.core.sorting import ordered
- from sympy.core.symbol import Dummy, Wild, Symbol, symbols
- from sympy.functions.combinatorial.factorials import factorial
- from sympy.functions.combinatorial.numbers import bernoulli, harmonic
- from sympy.functions.elementary.exponential import exp, log
- from sympy.functions.elementary.piecewise import Piecewise
- from sympy.functions.elementary.trigonometric import cot, csc
- from sympy.functions.special.hyper import hyper
- from sympy.functions.special.tensor_functions import KroneckerDelta
- from sympy.functions.special.zeta_functions import zeta
- from sympy.integrals.integrals import Integral
- from sympy.logic.boolalg import And
- from sympy.polys.partfrac import apart
- from sympy.polys.polyerrors import PolynomialError, PolificationFailed
- from sympy.polys.polytools import parallel_poly_from_expr, Poly, factor
- from sympy.polys.rationaltools import together
- from sympy.series.limitseq import limit_seq
- from sympy.series.order import O
- from sympy.series.residues import residue
- from sympy.sets.sets import FiniteSet, Interval
- from sympy.simplify.combsimp import combsimp
- from sympy.simplify.hyperexpand import hyperexpand
- from sympy.simplify.powsimp import powsimp
- from sympy.simplify.radsimp import denom, fraction
- from sympy.simplify.simplify import (factor_sum, sum_combine, simplify,
- nsimplify, hypersimp)
- from sympy.solvers.solvers import solve
- from sympy.solvers.solveset import solveset
- from sympy.utilities.iterables import sift
- import itertools
- class Sum(AddWithLimits, ExprWithIntLimits):
- r"""
- Represents unevaluated summation.
- Explanation
- ===========
- ``Sum`` represents a finite or infinite series, with the first argument
- being the general form of terms in the series, and the second argument
- being ``(dummy_variable, start, end)``, with ``dummy_variable`` taking
- all integer values from ``start`` through ``end``. In accordance with
- long-standing mathematical convention, the end term is included in the
- summation.
- Finite sums
- ===========
- For finite sums (and sums with symbolic limits assumed to be finite) we
- follow the summation convention described by Karr [1], especially
- definition 3 of section 1.4. The sum:
- .. math::
- \sum_{m \leq i < n} f(i)
- has *the obvious meaning* for `m < n`, namely:
- .. math::
- \sum_{m \leq i < n} f(i) = f(m) + f(m+1) + \ldots + f(n-2) + f(n-1)
- with the upper limit value `f(n)` excluded. The sum over an empty set is
- zero if and only if `m = n`:
- .. math::
- \sum_{m \leq i < n} f(i) = 0 \quad \mathrm{for} \quad m = n
- Finally, for all other sums over empty sets we assume the following
- definition:
- .. math::
- \sum_{m \leq i < n} f(i) = - \sum_{n \leq i < m} f(i) \quad \mathrm{for} \quad m > n
- It is important to note that Karr defines all sums with the upper
- limit being exclusive. This is in contrast to the usual mathematical notation,
- but does not affect the summation convention. Indeed we have:
- .. math::
- \sum_{m \leq i < n} f(i) = \sum_{i = m}^{n - 1} f(i)
- where the difference in notation is intentional to emphasize the meaning,
- with limits typeset on the top being inclusive.
- Examples
- ========
- >>> from sympy.abc import i, k, m, n, x
- >>> from sympy import Sum, factorial, oo, IndexedBase, Function
- >>> Sum(k, (k, 1, m))
- Sum(k, (k, 1, m))
- >>> Sum(k, (k, 1, m)).doit()
- m**2/2 + m/2
- >>> Sum(k**2, (k, 1, m))
- Sum(k**2, (k, 1, m))
- >>> Sum(k**2, (k, 1, m)).doit()
- m**3/3 + m**2/2 + m/6
- >>> Sum(x**k, (k, 0, oo))
- Sum(x**k, (k, 0, oo))
- >>> Sum(x**k, (k, 0, oo)).doit()
- Piecewise((1/(1 - x), Abs(x) < 1), (Sum(x**k, (k, 0, oo)), True))
- >>> Sum(x**k/factorial(k), (k, 0, oo)).doit()
- exp(x)
- Here are examples to do summation with symbolic indices. You
- can use either Function of IndexedBase classes:
- >>> f = Function('f')
- >>> Sum(f(n), (n, 0, 3)).doit()
- f(0) + f(1) + f(2) + f(3)
- >>> Sum(f(n), (n, 0, oo)).doit()
- Sum(f(n), (n, 0, oo))
- >>> f = IndexedBase('f')
- >>> Sum(f[n]**2, (n, 0, 3)).doit()
- f[0]**2 + f[1]**2 + f[2]**2 + f[3]**2
- An example showing that the symbolic result of a summation is still
- valid for seemingly nonsensical values of the limits. Then the Karr
- convention allows us to give a perfectly valid interpretation to
- those sums by interchanging the limits according to the above rules:
- >>> S = Sum(i, (i, 1, n)).doit()
- >>> S
- n**2/2 + n/2
- >>> S.subs(n, -4)
- 6
- >>> Sum(i, (i, 1, -4)).doit()
- 6
- >>> Sum(-i, (i, -3, 0)).doit()
- 6
- An explicit example of the Karr summation convention:
- >>> S1 = Sum(i**2, (i, m, m+n-1)).doit()
- >>> S1
- m**2*n + m*n**2 - m*n + n**3/3 - n**2/2 + n/6
- >>> S2 = Sum(i**2, (i, m+n, m-1)).doit()
- >>> S2
- -m**2*n - m*n**2 + m*n - n**3/3 + n**2/2 - n/6
- >>> S1 + S2
- 0
- >>> S3 = Sum(i, (i, m, m-1)).doit()
- >>> S3
- 0
- See Also
- ========
- summation
- Product, sympy.concrete.products.product
- References
- ==========
- .. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
- Volume 28 Issue 2, April 1981, Pages 305-350
- http://dl.acm.org/citation.cfm?doid=322248.322255
- .. [2] https://en.wikipedia.org/wiki/Summation#Capital-sigma_notation
- .. [3] https://en.wikipedia.org/wiki/Empty_sum
- """
- __slots__ = ('is_commutative',)
- limits: tTuple[tTuple[Symbol, Expr, Expr]]
- def __new__(cls, function, *symbols, **assumptions):
- obj = AddWithLimits.__new__(cls, function, *symbols, **assumptions)
- if not hasattr(obj, 'limits'):
- return obj
- if any(len(l) != 3 or None in l for l in obj.limits):
- raise ValueError('Sum requires values for lower and upper bounds.')
- return obj
- def _eval_is_zero(self):
- # a Sum is only zero if its function is zero or if all terms
- # cancel out. This only answers whether the summand is zero; if
- # not then None is returned since we don't analyze whether all
- # terms cancel out.
- if self.function.is_zero or self.has_empty_sequence:
- return True
- def _eval_is_extended_real(self):
- if self.has_empty_sequence:
- return True
- return self.function.is_extended_real
- def _eval_is_positive(self):
- if self.has_finite_limits and self.has_reversed_limits is False:
- return self.function.is_positive
- def _eval_is_negative(self):
- if self.has_finite_limits and self.has_reversed_limits is False:
- return self.function.is_negative
- def _eval_is_finite(self):
- if self.has_finite_limits and self.function.is_finite:
- return True
- def doit(self, **hints):
- if hints.get('deep', True):
- f = self.function.doit(**hints)
- else:
- f = self.function
- # first make sure any definite limits have summation
- # variables with matching assumptions
- reps = {}
- for xab in self.limits:
- d = _dummy_with_inherited_properties_concrete(xab)
- if d:
- reps[xab[0]] = d
- if reps:
- undo = {v: k for k, v in reps.items()}
- did = self.xreplace(reps).doit(**hints)
- if isinstance(did, tuple): # when separate=True
- did = tuple([i.xreplace(undo) for i in did])
- elif did is not None:
- did = did.xreplace(undo)
- else:
- did = self
- return did
- if self.function.is_Matrix:
- expanded = self.expand()
- if self != expanded:
- return expanded.doit()
- return _eval_matrix_sum(self)
- for n, limit in enumerate(self.limits):
- i, a, b = limit
- dif = b - a
- if dif == -1:
- # Any summation over an empty set is zero
- return S.Zero
- if dif.is_integer and dif.is_negative:
- a, b = b + 1, a - 1
- f = -f
- newf = eval_sum(f, (i, a, b))
- if newf is None:
- if f == self.function:
- zeta_function = self.eval_zeta_function(f, (i, a, b))
- if zeta_function is not None:
- return zeta_function
- return self
- else:
- return self.func(f, *self.limits[n:])
- f = newf
- if hints.get('deep', True):
- # eval_sum could return partially unevaluated
- # result with Piecewise. In this case we won't
- # doit() recursively.
- if not isinstance(f, Piecewise):
- return f.doit(**hints)
- return f
- def eval_zeta_function(self, f, limits):
- """
- Check whether the function matches with the zeta function.
- If it matches, then return a `Piecewise` expression because
- zeta function does not converge unless `s > 1` and `q > 0`
- """
- i, a, b = limits
- w, y, z = Wild('w', exclude=[i]), Wild('y', exclude=[i]), Wild('z', exclude=[i])
- result = f.match((w * i + y) ** (-z))
- if result is not None and b is S.Infinity:
- coeff = 1 / result[w] ** result[z]
- s = result[z]
- q = result[y] / result[w] + a
- return Piecewise((coeff * zeta(s, q), And(q > 0, s > 1)), (self, True))
- def _eval_derivative(self, x):
- """
- Differentiate wrt x as long as x is not in the free symbols of any of
- the upper or lower limits.
- Explanation
- ===========
- Sum(a*b*x, (x, 1, a)) can be differentiated wrt x or b but not `a`
- since the value of the sum is discontinuous in `a`. In a case
- involving a limit variable, the unevaluated derivative is returned.
- """
- # diff already confirmed that x is in the free symbols of self, but we
- # don't want to differentiate wrt any free symbol in the upper or lower
- # limits
- # XXX remove this test for free_symbols when the default _eval_derivative is in
- if isinstance(x, Symbol) and x not in self.free_symbols:
- return S.Zero
- # get limits and the function
- f, limits = self.function, list(self.limits)
- limit = limits.pop(-1)
- if limits: # f is the argument to a Sum
- f = self.func(f, *limits)
- _, a, b = limit
- if x in a.free_symbols or x in b.free_symbols:
- return None
- df = Derivative(f, x, evaluate=True)
- rv = self.func(df, limit)
- return rv
- def _eval_difference_delta(self, n, step):
- k, _, upper = self.args[-1]
- new_upper = upper.subs(n, n + step)
- if len(self.args) == 2:
- f = self.args[0]
- else:
- f = self.func(*self.args[:-1])
- return Sum(f, (k, upper + 1, new_upper)).doit()
- def _eval_simplify(self, **kwargs):
- # split the function into adds
- terms = Add.make_args(expand(self.function))
- s_t = [] # Sum Terms
- o_t = [] # Other Terms
- for term in terms:
- if term.has(Sum):
- # if there is an embedded sum here
- # it is of the form x * (Sum(whatever))
- # hence we make a Mul out of it, and simplify all interior sum terms
- subterms = Mul.make_args(expand(term))
- out_terms = []
- for subterm in subterms:
- # go through each term
- if isinstance(subterm, Sum):
- # if it's a sum, simplify it
- out_terms.append(subterm._eval_simplify())
- else:
- # otherwise, add it as is
- out_terms.append(subterm)
- # turn it back into a Mul
- s_t.append(Mul(*out_terms))
- else:
- o_t.append(term)
- # next try to combine any interior sums for further simplification
- result = Add(sum_combine(s_t), *o_t)
- return factor_sum(result, limits=self.limits)
- def is_convergent(self):
- r"""
- Checks for the convergence of a Sum.
- Explanation
- ===========
- We divide the study of convergence of infinite sums and products in
- two parts.
- First Part:
- One part is the question whether all the terms are well defined, i.e.,
- they are finite in a sum and also non-zero in a product. Zero
- is the analogy of (minus) infinity in products as
- :math:`e^{-\infty} = 0`.
- Second Part:
- The second part is the question of convergence after infinities,
- and zeros in products, have been omitted assuming that their number
- is finite. This means that we only consider the tail of the sum or
- product, starting from some point after which all terms are well
- defined.
- For example, in a sum of the form:
- .. math::
- \sum_{1 \leq i < \infty} \frac{1}{n^2 + an + b}
- where a and b are numbers. The routine will return true, even if there
- are infinities in the term sequence (at most two). An analogous
- product would be:
- .. math::
- \prod_{1 \leq i < \infty} e^{\frac{1}{n^2 + an + b}}
- This is how convergence is interpreted. It is concerned with what
- happens at the limit. Finding the bad terms is another independent
- matter.
- Note: It is responsibility of user to see that the sum or product
- is well defined.
- There are various tests employed to check the convergence like
- divergence test, root test, integral test, alternating series test,
- comparison tests, Dirichlet tests. It returns true if Sum is convergent
- and false if divergent and NotImplementedError if it cannot be checked.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Convergence_tests
- Examples
- ========
- >>> from sympy import factorial, S, Sum, Symbol, oo
- >>> n = Symbol('n', integer=True)
- >>> Sum(n/(n - 1), (n, 4, 7)).is_convergent()
- True
- >>> Sum(n/(2*n + 1), (n, 1, oo)).is_convergent()
- False
- >>> Sum(factorial(n)/5**n, (n, 1, oo)).is_convergent()
- False
- >>> Sum(1/n**(S(6)/5), (n, 1, oo)).is_convergent()
- True
- See Also
- ========
- Sum.is_absolutely_convergent()
- sympy.concrete.products.Product.is_convergent()
- """
- p, q, r = symbols('p q r', cls=Wild)
- sym = self.limits[0][0]
- lower_limit = self.limits[0][1]
- upper_limit = self.limits[0][2]
- sequence_term = self.function.simplify()
- if len(sequence_term.free_symbols) > 1:
- raise NotImplementedError("convergence checking for more than one symbol "
- "containing series is not handled")
- if lower_limit.is_finite and upper_limit.is_finite:
- return S.true
- # transform sym -> -sym and swap the upper_limit = S.Infinity
- # and lower_limit = - upper_limit
- if lower_limit is S.NegativeInfinity:
- if upper_limit is S.Infinity:
- return Sum(sequence_term, (sym, 0, S.Infinity)).is_convergent() and \
- Sum(sequence_term, (sym, S.NegativeInfinity, 0)).is_convergent()
- sequence_term = simplify(sequence_term.xreplace({sym: -sym}))
- lower_limit = -upper_limit
- upper_limit = S.Infinity
- sym_ = Dummy(sym.name, integer=True, positive=True)
- sequence_term = sequence_term.xreplace({sym: sym_})
- sym = sym_
- interval = Interval(lower_limit, upper_limit)
- # Piecewise function handle
- if sequence_term.is_Piecewise:
- for func, cond in sequence_term.args:
- # see if it represents something going to oo
- if cond == True or cond.as_set().sup is S.Infinity:
- s = Sum(func, (sym, lower_limit, upper_limit))
- return s.is_convergent()
- return S.true
- ### -------- Divergence test ----------- ###
- try:
- lim_val = limit_seq(sequence_term, sym)
- if lim_val is not None and lim_val.is_zero is False:
- return S.false
- except NotImplementedError:
- pass
- try:
- lim_val_abs = limit_seq(abs(sequence_term), sym)
- if lim_val_abs is not None and lim_val_abs.is_zero is False:
- return S.false
- except NotImplementedError:
- pass
- order = O(sequence_term, (sym, S.Infinity))
- ### --------- p-series test (1/n**p) ---------- ###
- p_series_test = order.expr.match(sym**p)
- if p_series_test is not None:
- if p_series_test[p] < -1:
- return S.true
- if p_series_test[p] >= -1:
- return S.false
- ### ------------- comparison test ------------- ###
- # 1/(n**p*log(n)**q*log(log(n))**r) comparison
- n_log_test = order.expr.match(1/(sym**p*log(sym)**q*log(log(sym))**r))
- if n_log_test is not None:
- if (n_log_test[p] > 1 or
- (n_log_test[p] == 1 and n_log_test[q] > 1) or
- (n_log_test[p] == n_log_test[q] == 1 and n_log_test[r] > 1)):
- return S.true
- return S.false
- ### ------------- Limit comparison test -----------###
- # (1/n) comparison
- try:
- lim_comp = limit_seq(sym*sequence_term, sym)
- if lim_comp is not None and lim_comp.is_number and lim_comp > 0:
- return S.false
- except NotImplementedError:
- pass
- ### ----------- ratio test ---------------- ###
- next_sequence_term = sequence_term.xreplace({sym: sym + 1})
- ratio = combsimp(powsimp(next_sequence_term/sequence_term))
- try:
- lim_ratio = limit_seq(ratio, sym)
- if lim_ratio is not None and lim_ratio.is_number:
- if abs(lim_ratio) > 1:
- return S.false
- if abs(lim_ratio) < 1:
- return S.true
- except NotImplementedError:
- lim_ratio = None
- ### ---------- Raabe's test -------------- ###
- if lim_ratio == 1: # ratio test inconclusive
- test_val = sym*(sequence_term/
- sequence_term.subs(sym, sym + 1) - 1)
- test_val = test_val.gammasimp()
- try:
- lim_val = limit_seq(test_val, sym)
- if lim_val is not None and lim_val.is_number:
- if lim_val > 1:
- return S.true
- if lim_val < 1:
- return S.false
- except NotImplementedError:
- pass
- ### ----------- root test ---------------- ###
- # lim = Limit(abs(sequence_term)**(1/sym), sym, S.Infinity)
- try:
- lim_evaluated = limit_seq(abs(sequence_term)**(1/sym), sym)
- if lim_evaluated is not None and lim_evaluated.is_number:
- if lim_evaluated < 1:
- return S.true
- if lim_evaluated > 1:
- return S.false
- except NotImplementedError:
- pass
- ### ------------- alternating series test ----------- ###
- dict_val = sequence_term.match(S.NegativeOne**(sym + p)*q)
- if not dict_val[p].has(sym) and is_decreasing(dict_val[q], interval):
- return S.true
- ### ------------- integral test -------------- ###
- check_interval = None
- maxima = solveset(sequence_term.diff(sym), sym, interval)
- if not maxima:
- check_interval = interval
- elif isinstance(maxima, FiniteSet) and maxima.sup.is_number:
- check_interval = Interval(maxima.sup, interval.sup)
- if (check_interval is not None and
- (is_decreasing(sequence_term, check_interval) or
- is_decreasing(-sequence_term, check_interval))):
- integral_val = Integral(
- sequence_term, (sym, lower_limit, upper_limit))
- try:
- integral_val_evaluated = integral_val.doit()
- if integral_val_evaluated.is_number:
- return S(integral_val_evaluated.is_finite)
- except NotImplementedError:
- pass
- ### ----- Dirichlet and bounded times convergent tests ----- ###
- # TODO
- #
- # Dirichlet_test
- # https://en.wikipedia.org/wiki/Dirichlet%27s_test
- #
- # Bounded times convergent test
- # It is based on comparison theorems for series.
- # In particular, if the general term of a series can
- # be written as a product of two terms a_n and b_n
- # and if a_n is bounded and if Sum(b_n) is absolutely
- # convergent, then the original series Sum(a_n * b_n)
- # is absolutely convergent and so convergent.
- #
- # The following code can grows like 2**n where n is the
- # number of args in order.expr
- # Possibly combined with the potentially slow checks
- # inside the loop, could make this test extremely slow
- # for larger summation expressions.
- if order.expr.is_Mul:
- args = order.expr.args
- argset = set(args)
- ### -------------- Dirichlet tests -------------- ###
- m = Dummy('m', integer=True)
- def _dirichlet_test(g_n):
- try:
- ing_val = limit_seq(Sum(g_n, (sym, interval.inf, m)).doit(), m)
- if ing_val is not None and ing_val.is_finite:
- return S.true
- except NotImplementedError:
- pass
- ### -------- bounded times convergent test ---------###
- def _bounded_convergent_test(g1_n, g2_n):
- try:
- lim_val = limit_seq(g1_n, sym)
- if lim_val is not None and (lim_val.is_finite or (
- isinstance(lim_val, AccumulationBounds)
- and (lim_val.max - lim_val.min).is_finite)):
- if Sum(g2_n, (sym, lower_limit, upper_limit)).is_absolutely_convergent():
- return S.true
- except NotImplementedError:
- pass
- for n in range(1, len(argset)):
- for a_tuple in itertools.combinations(args, n):
- b_set = argset - set(a_tuple)
- a_n = Mul(*a_tuple)
- b_n = Mul(*b_set)
- if is_decreasing(a_n, interval):
- dirich = _dirichlet_test(b_n)
- if dirich is not None:
- return dirich
- bc_test = _bounded_convergent_test(a_n, b_n)
- if bc_test is not None:
- return bc_test
- _sym = self.limits[0][0]
- sequence_term = sequence_term.xreplace({sym: _sym})
- raise NotImplementedError("The algorithm to find the Sum convergence of %s "
- "is not yet implemented" % (sequence_term))
- def is_absolutely_convergent(self):
- """
- Checks for the absolute convergence of an infinite series.
- Same as checking convergence of absolute value of sequence_term of
- an infinite series.
- References
- ==========
- .. [1] https://en.wikipedia.org/wiki/Absolute_convergence
- Examples
- ========
- >>> from sympy import Sum, Symbol, oo
- >>> n = Symbol('n', integer=True)
- >>> Sum((-1)**n, (n, 1, oo)).is_absolutely_convergent()
- False
- >>> Sum((-1)**n/n**2, (n, 1, oo)).is_absolutely_convergent()
- True
- See Also
- ========
- Sum.is_convergent()
- """
- return Sum(abs(self.function), self.limits).is_convergent()
- def euler_maclaurin(self, m=0, n=0, eps=0, eval_integral=True):
- """
- Return an Euler-Maclaurin approximation of self, where m is the
- number of leading terms to sum directly and n is the number of
- terms in the tail.
- With m = n = 0, this is simply the corresponding integral
- plus a first-order endpoint correction.
- Returns (s, e) where s is the Euler-Maclaurin approximation
- and e is the estimated error (taken to be the magnitude of
- the first omitted term in the tail):
- >>> from sympy.abc import k, a, b
- >>> from sympy import Sum
- >>> Sum(1/k, (k, 2, 5)).doit().evalf()
- 1.28333333333333
- >>> s, e = Sum(1/k, (k, 2, 5)).euler_maclaurin()
- >>> s
- -log(2) + 7/20 + log(5)
- >>> from sympy import sstr
- >>> print(sstr((s.evalf(), e.evalf()), full_prec=True))
- (1.26629073187415, 0.0175000000000000)
- The endpoints may be symbolic:
- >>> s, e = Sum(1/k, (k, a, b)).euler_maclaurin()
- >>> s
- -log(a) + log(b) + 1/(2*b) + 1/(2*a)
- >>> e
- Abs(1/(12*b**2) - 1/(12*a**2))
- If the function is a polynomial of degree at most 2n+1, the
- Euler-Maclaurin formula becomes exact (and e = 0 is returned):
- >>> Sum(k, (k, 2, b)).euler_maclaurin()
- (b**2/2 + b/2 - 1, 0)
- >>> Sum(k, (k, 2, b)).doit()
- b**2/2 + b/2 - 1
- With a nonzero eps specified, the summation is ended
- as soon as the remainder term is less than the epsilon.
- """
- m = int(m)
- n = int(n)
- f = self.function
- if len(self.limits) != 1:
- raise ValueError("More than 1 limit")
- i, a, b = self.limits[0]
- if (a > b) == True:
- if a - b == 1:
- return S.Zero, S.Zero
- a, b = b + 1, a - 1
- f = -f
- s = S.Zero
- if m:
- if b.is_Integer and a.is_Integer:
- m = min(m, b - a + 1)
- if not eps or f.is_polynomial(i):
- for k in range(m):
- s += f.subs(i, a + k)
- else:
- term = f.subs(i, a)
- if term:
- test = abs(term.evalf(3)) < eps
- if test == True:
- return s, abs(term)
- elif not (test == False):
- # a symbolic Relational class, can't go further
- return term, S.Zero
- s += term
- for k in range(1, m):
- term = f.subs(i, a + k)
- if abs(term.evalf(3)) < eps and term != 0:
- return s, abs(term)
- s += term
- if b - a + 1 == m:
- return s, S.Zero
- a += m
- x = Dummy('x')
- I = Integral(f.subs(i, x), (x, a, b))
- if eval_integral:
- I = I.doit()
- s += I
- def fpoint(expr):
- if b is S.Infinity:
- return expr.subs(i, a), 0
- return expr.subs(i, a), expr.subs(i, b)
- fa, fb = fpoint(f)
- iterm = (fa + fb)/2
- g = f.diff(i)
- for k in range(1, n + 2):
- ga, gb = fpoint(g)
- term = bernoulli(2*k)/factorial(2*k)*(gb - ga)
- if k > n:
- break
- if eps and term:
- term_evalf = term.evalf(3)
- if term_evalf is S.NaN:
- return S.NaN, S.NaN
- if abs(term_evalf) < eps:
- break
- s += term
- g = g.diff(i, 2, simplify=False)
- return s + iterm, abs(term)
- def reverse_order(self, *indices):
- """
- Reverse the order of a limit in a Sum.
- Explanation
- ===========
- ``reverse_order(self, *indices)`` reverses some limits in the expression
- ``self`` which can be either a ``Sum`` or a ``Product``. The selectors in
- the argument ``indices`` specify some indices whose limits get reversed.
- These selectors are either variable names or numerical indices counted
- starting from the inner-most limit tuple.
- Examples
- ========
- >>> from sympy import Sum
- >>> from sympy.abc import x, y, a, b, c, d
- >>> Sum(x, (x, 0, 3)).reverse_order(x)
- Sum(-x, (x, 4, -1))
- >>> Sum(x*y, (x, 1, 5), (y, 0, 6)).reverse_order(x, y)
- Sum(x*y, (x, 6, 0), (y, 7, -1))
- >>> Sum(x, (x, a, b)).reverse_order(x)
- Sum(-x, (x, b + 1, a - 1))
- >>> Sum(x, (x, a, b)).reverse_order(0)
- Sum(-x, (x, b + 1, a - 1))
- While one should prefer variable names when specifying which limits
- to reverse, the index counting notation comes in handy in case there
- are several symbols with the same name.
- >>> S = Sum(x**2, (x, a, b), (x, c, d))
- >>> S
- Sum(x**2, (x, a, b), (x, c, d))
- >>> S0 = S.reverse_order(0)
- >>> S0
- Sum(-x**2, (x, b + 1, a - 1), (x, c, d))
- >>> S1 = S0.reverse_order(1)
- >>> S1
- Sum(x**2, (x, b + 1, a - 1), (x, d + 1, c - 1))
- Of course we can mix both notations:
- >>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(x, 1)
- Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
- >>> Sum(x*y, (x, a, b), (y, 2, 5)).reverse_order(y, x)
- Sum(x*y, (x, b + 1, a - 1), (y, 6, 1))
- See Also
- ========
- sympy.concrete.expr_with_intlimits.ExprWithIntLimits.index, reorder_limit,
- sympy.concrete.expr_with_intlimits.ExprWithIntLimits.reorder
- References
- ==========
- .. [1] Michael Karr, "Summation in Finite Terms", Journal of the ACM,
- Volume 28 Issue 2, April 1981, Pages 305-350
- http://dl.acm.org/citation.cfm?doid=322248.322255
- """
- l_indices = list(indices)
- for i, indx in enumerate(l_indices):
- if not isinstance(indx, int):
- l_indices[i] = self.index(indx)
- e = 1
- limits = []
- for i, limit in enumerate(self.limits):
- l = limit
- if i in l_indices:
- e = -e
- l = (limit[0], limit[2] + 1, limit[1] - 1)
- limits.append(l)
- return Sum(e * self.function, *limits)
- def _eval_rewrite_as_Product(self, *args, **kwargs):
- from sympy.concrete.products import Product
- if self.function.is_extended_real:
- return log(Product(exp(self.function), *self.limits))
- def summation(f, *symbols, **kwargs):
- r"""
- Compute the summation of f with respect to symbols.
- Explanation
- ===========
- The notation for symbols is similar to the notation used in Integral.
- summation(f, (i, a, b)) computes the sum of f with respect to i from a to b,
- i.e.,
- ::
- b
- ____
- \ `
- summation(f, (i, a, b)) = ) f
- /___,
- i = a
- If it cannot compute the sum, it returns an unevaluated Sum object.
- Repeated sums can be computed by introducing additional symbols tuples::
- Examples
- ========
- >>> from sympy import summation, oo, symbols, log
- >>> i, n, m = symbols('i n m', integer=True)
- >>> summation(2*i - 1, (i, 1, n))
- n**2
- >>> summation(1/2**i, (i, 0, oo))
- 2
- >>> summation(1/log(n)**n, (n, 2, oo))
- Sum(log(n)**(-n), (n, 2, oo))
- >>> summation(i, (i, 0, n), (n, 0, m))
- m**3/6 + m**2/2 + m/3
- >>> from sympy.abc import x
- >>> from sympy import factorial
- >>> summation(x**n/factorial(n), (n, 0, oo))
- exp(x)
- See Also
- ========
- Sum
- Product, sympy.concrete.products.product
- """
- return Sum(f, *symbols, **kwargs).doit(deep=False)
- def telescopic_direct(L, R, n, limits):
- """
- Returns the direct summation of the terms of a telescopic sum
- Explanation
- ===========
- L is the term with lower index
- R is the term with higher index
- n difference between the indexes of L and R
- Examples
- ========
- >>> from sympy.concrete.summations import telescopic_direct
- >>> from sympy.abc import k, a, b
- >>> telescopic_direct(1/k, -1/(k+2), 2, (k, a, b))
- -1/(b + 2) - 1/(b + 1) + 1/(a + 1) + 1/a
- """
- (i, a, b) = limits
- s = 0
- for m in range(n):
- s += L.subs(i, a + m) + R.subs(i, b - m)
- return s
- def telescopic(L, R, limits):
- '''
- Tries to perform the summation using the telescopic property.
- Return None if not possible.
- '''
- (i, a, b) = limits
- if L.is_Add or R.is_Add:
- return None
- # We want to solve(L.subs(i, i + m) + R, m)
- # First we try a simple match since this does things that
- # solve doesn't do, e.g. solve(f(k+m)-f(k), m) fails
- k = Wild("k")
- sol = (-R).match(L.subs(i, i + k))
- s = None
- if sol and k in sol:
- s = sol[k]
- if not (s.is_Integer and L.subs(i, i + s) == -R):
- # sometimes match fail(f(x+2).match(-f(x+k))->{k: -2 - 2x}))
- s = None
- # But there are things that match doesn't do that solve
- # can do, e.g. determine that 1/(x + m) = 1/(1 - x) when m = 1
- if s is None:
- m = Dummy('m')
- try:
- sol = solve(L.subs(i, i + m) + R, m) or []
- except NotImplementedError:
- return None
- sol = [si for si in sol if si.is_Integer and
- (L.subs(i, i + si) + R).expand().is_zero]
- if len(sol) != 1:
- return None
- s = sol[0]
- if s < 0:
- return telescopic_direct(R, L, abs(s), (i, a, b))
- elif s > 0:
- return telescopic_direct(L, R, s, (i, a, b))
- def eval_sum(f, limits):
- (i, a, b) = limits
- if f.is_zero:
- return S.Zero
- if i not in f.free_symbols:
- return f*(b - a + 1)
- if a == b:
- return f.subs(i, a)
- if isinstance(f, Piecewise):
- if not any(i in arg.args[1].free_symbols for arg in f.args):
- # Piecewise conditions do not depend on the dummy summation variable,
- # therefore we can fold: Sum(Piecewise((e, c), ...), limits)
- # --> Piecewise((Sum(e, limits), c), ...)
- newargs = []
- for arg in f.args:
- newexpr = eval_sum(arg.expr, limits)
- if newexpr is None:
- return None
- newargs.append((newexpr, arg.cond))
- return f.func(*newargs)
- if f.has(KroneckerDelta):
- from .delta import deltasummation, _has_simple_delta
- f = f.replace(
- lambda x: isinstance(x, Sum),
- lambda x: x.factor()
- )
- if _has_simple_delta(f, limits[0]):
- return deltasummation(f, limits)
- dif = b - a
- definite = dif.is_Integer
- # Doing it directly may be faster if there are very few terms.
- if definite and (dif < 100):
- return eval_sum_direct(f, (i, a, b))
- if isinstance(f, Piecewise):
- return None
- # Try to do it symbolically. Even when the number of terms is known,
- # this can save time when b-a is big.
- # We should try to transform to partial fractions
- value = eval_sum_symbolic(f.expand(), (i, a, b))
- if value is not None:
- return value
- # Do it directly
- if definite:
- return eval_sum_direct(f, (i, a, b))
- def eval_sum_direct(expr, limits):
- """
- Evaluate expression directly, but perform some simple checks first
- to possibly result in a smaller expression and faster execution.
- """
- (i, a, b) = limits
- dif = b - a
- # Linearity
- if expr.is_Mul:
- # Try factor out everything not including i
- without_i, with_i = expr.as_independent(i)
- if without_i != 1:
- s = eval_sum_direct(with_i, (i, a, b))
- if s:
- r = without_i*s
- if r is not S.NaN:
- return r
- else:
- # Try term by term
- L, R = expr.as_two_terms()
- if not L.has(i):
- sR = eval_sum_direct(R, (i, a, b))
- if sR:
- return L*sR
- if not R.has(i):
- sL = eval_sum_direct(L, (i, a, b))
- if sL:
- return sL*R
- try:
- expr = apart(expr, i) # see if it becomes an Add
- except PolynomialError:
- pass
- if expr.is_Add:
- # Try factor out everything not including i
- without_i, with_i = expr.as_independent(i)
- if without_i != 0:
- s = eval_sum_direct(with_i, (i, a, b))
- if s:
- r = without_i*(dif + 1) + s
- if r is not S.NaN:
- return r
- else:
- # Try term by term
- L, R = expr.as_two_terms()
- lsum = eval_sum_direct(L, (i, a, b))
- rsum = eval_sum_direct(R, (i, a, b))
- if None not in (lsum, rsum):
- r = lsum + rsum
- if r is not S.NaN:
- return r
- return Add(*[expr.subs(i, a + j) for j in range(dif + 1)])
- def eval_sum_symbolic(f, limits):
- f_orig = f
- (i, a, b) = limits
- if not f.has(i):
- return f*(b - a + 1)
- # Linearity
- if f.is_Mul:
- # Try factor out everything not including i
- without_i, with_i = f.as_independent(i)
- if without_i != 1:
- s = eval_sum_symbolic(with_i, (i, a, b))
- if s:
- r = without_i*s
- if r is not S.NaN:
- return r
- else:
- # Try term by term
- L, R = f.as_two_terms()
- if not L.has(i):
- sR = eval_sum_symbolic(R, (i, a, b))
- if sR:
- return L*sR
- if not R.has(i):
- sL = eval_sum_symbolic(L, (i, a, b))
- if sL:
- return sL*R
- try:
- f = apart(f, i) # see if it becomes an Add
- except PolynomialError:
- pass
- if f.is_Add:
- L, R = f.as_two_terms()
- lrsum = telescopic(L, R, (i, a, b))
- if lrsum:
- return lrsum
- # Try factor out everything not including i
- without_i, with_i = f.as_independent(i)
- if without_i != 0:
- s = eval_sum_symbolic(with_i, (i, a, b))
- if s:
- r = without_i*(b - a + 1) + s
- if r is not S.NaN:
- return r
- else:
- # Try term by term
- lsum = eval_sum_symbolic(L, (i, a, b))
- rsum = eval_sum_symbolic(R, (i, a, b))
- if None not in (lsum, rsum):
- r = lsum + rsum
- if r is not S.NaN:
- return r
- # Polynomial terms with Faulhaber's formula
- n = Wild('n')
- result = f.match(i**n)
- if result is not None:
- n = result[n]
- if n.is_Integer:
- if n >= 0:
- if (b is S.Infinity and a is not S.NegativeInfinity) or \
- (a is S.NegativeInfinity and b is not S.Infinity):
- return S.Infinity
- return ((bernoulli(n + 1, b + 1) - bernoulli(n + 1, a))/(n + 1)).expand()
- elif a.is_Integer and a >= 1:
- if n == -1:
- return harmonic(b) - harmonic(a - 1)
- else:
- return harmonic(b, abs(n)) - harmonic(a - 1, abs(n))
- if not (a.has(S.Infinity, S.NegativeInfinity) or
- b.has(S.Infinity, S.NegativeInfinity)):
- # Geometric terms
- c1 = Wild('c1', exclude=[i])
- c2 = Wild('c2', exclude=[i])
- c3 = Wild('c3', exclude=[i])
- wexp = Wild('wexp')
- # Here we first attempt powsimp on f for easier matching with the
- # exponential pattern, and attempt expansion on the exponent for easier
- # matching with the linear pattern.
- e = f.powsimp().match(c1 ** wexp)
- if e is not None:
- e_exp = e.pop(wexp).expand().match(c2*i + c3)
- if e_exp is not None:
- e.update(e_exp)
- p = (c1**c3).subs(e)
- q = (c1**c2).subs(e)
- r = p*(q**a - q**(b + 1))/(1 - q)
- l = p*(b - a + 1)
- return Piecewise((l, Eq(q, S.One)), (r, True))
- r = gosper_sum(f, (i, a, b))
- if isinstance(r, (Mul,Add)):
- non_limit = r.free_symbols - Tuple(*limits[1:]).free_symbols
- den = denom(together(r))
- den_sym = non_limit & den.free_symbols
- args = []
- for v in ordered(den_sym):
- try:
- s = solve(den, v)
- m = Eq(v, s[0]) if s else S.false
- if m != False:
- args.append((Sum(f_orig.subs(*m.args), limits).doit(), m))
- break
- except NotImplementedError:
- continue
- args.append((r, True))
- return Piecewise(*args)
- if r not in (None, S.NaN):
- return r
- h = eval_sum_hyper(f_orig, (i, a, b))
- if h is not None:
- return h
- r = eval_sum_residue(f_orig, (i, a, b))
- if r is not None:
- return r
- factored = f_orig.factor()
- if factored != f_orig:
- return eval_sum_symbolic(factored, (i, a, b))
- def _eval_sum_hyper(f, i, a):
- """ Returns (res, cond). Sums from a to oo. """
- if a != 0:
- return _eval_sum_hyper(f.subs(i, i + a), i, 0)
- if f.subs(i, 0) == 0:
- if simplify(f.subs(i, Dummy('i', integer=True, positive=True))) == 0:
- return S.Zero, True
- return _eval_sum_hyper(f.subs(i, i + 1), i, 0)
- hs = hypersimp(f, i)
- if hs is None:
- return None
- if isinstance(hs, Float):
- hs = nsimplify(hs)
- numer, denom = fraction(factor(hs))
- top, topl = numer.as_coeff_mul(i)
- bot, botl = denom.as_coeff_mul(i)
- ab = [top, bot]
- factors = [topl, botl]
- params = [[], []]
- for k in range(2):
- for fac in factors[k]:
- mul = 1
- if fac.is_Pow:
- mul = fac.exp
- fac = fac.base
- if not mul.is_Integer:
- return None
- p = Poly(fac, i)
- if p.degree() != 1:
- return None
- m, n = p.all_coeffs()
- ab[k] *= m**mul
- params[k] += [n/m]*mul
- # Add "1" to numerator parameters, to account for implicit n! in
- # hypergeometric series.
- ap = params[0] + [1]
- bq = params[1]
- x = ab[0]/ab[1]
- h = hyper(ap, bq, x)
- f = combsimp(f)
- return f.subs(i, 0)*hyperexpand(h), h.convergence_statement
- def eval_sum_hyper(f, i_a_b):
- i, a, b = i_a_b
- if (b - a).is_Integer:
- # We are never going to do better than doing the sum in the obvious way
- return None
- old_sum = Sum(f, (i, a, b))
- if b != S.Infinity:
- if a is S.NegativeInfinity:
- res = _eval_sum_hyper(f.subs(i, -i), i, -b)
- if res is not None:
- return Piecewise(res, (old_sum, True))
- else:
- res1 = _eval_sum_hyper(f, i, a)
- res2 = _eval_sum_hyper(f, i, b + 1)
- if res1 is None or res2 is None:
- return None
- (res1, cond1), (res2, cond2) = res1, res2
- cond = And(cond1, cond2)
- if cond == False:
- return None
- return Piecewise((res1 - res2, cond), (old_sum, True))
- if a is S.NegativeInfinity:
- res1 = _eval_sum_hyper(f.subs(i, -i), i, 1)
- res2 = _eval_sum_hyper(f, i, 0)
- if res1 is None or res2 is None:
- return None
- res1, cond1 = res1
- res2, cond2 = res2
- cond = And(cond1, cond2)
- if cond == False or cond.as_set() == S.EmptySet:
- return None
- return Piecewise((res1 + res2, cond), (old_sum, True))
- # Now b == oo, a != -oo
- res = _eval_sum_hyper(f, i, a)
- if res is not None:
- r, c = res
- if c == False:
- if r.is_number:
- f = f.subs(i, Dummy('i', integer=True, positive=True) + a)
- if f.is_positive or f.is_zero:
- return S.Infinity
- elif f.is_negative:
- return S.NegativeInfinity
- return None
- return Piecewise(res, (old_sum, True))
- def eval_sum_residue(f, i_a_b):
- r"""Compute the infinite summation with residues
- Notes
- =====
- If $f(n), g(n)$ are polynomials with $\deg(g(n)) - \deg(f(n)) \ge 2$,
- some infinite summations can be computed by the following residue
- evaluations.
- .. math::
- \sum_{n=-\infty, g(n) \ne 0}^{\infty} \frac{f(n)}{g(n)} =
- -\pi \sum_{\alpha|g(\alpha)=0}
- \text{Res}(\cot(\pi x) \frac{f(x)}{g(x)}, \alpha)
- .. math::
- \sum_{n=-\infty, g(n) \ne 0}^{\infty} (-1)^n \frac{f(n)}{g(n)} =
- -\pi \sum_{\alpha|g(\alpha)=0}
- \text{Res}(\csc(\pi x) \frac{f(x)}{g(x)}, \alpha)
- Examples
- ========
- >>> from sympy import Sum, oo, Symbol
- >>> x = Symbol('x')
- Doubly infinite series of rational functions.
- >>> Sum(1 / (x**2 + 1), (x, -oo, oo)).doit()
- pi/tanh(pi)
- Doubly infinite alternating series of rational functions.
- >>> Sum((-1)**x / (x**2 + 1), (x, -oo, oo)).doit()
- pi/sinh(pi)
- Infinite series of even rational functions.
- >>> Sum(1 / (x**2 + 1), (x, 0, oo)).doit()
- 1/2 + pi/(2*tanh(pi))
- Infinite series of alternating even rational functions.
- >>> Sum((-1)**x / (x**2 + 1), (x, 0, oo)).doit()
- pi/(2*sinh(pi)) + 1/2
- This also have heuristics to transform arbitrarily shifted summand or
- arbitrarily shifted summation range to the canonical problem the
- formula can handle.
- >>> Sum(1 / (x**2 + 2*x + 2), (x, -1, oo)).doit()
- 1/2 + pi/(2*tanh(pi))
- >>> Sum(1 / (x**2 + 4*x + 5), (x, -2, oo)).doit()
- 1/2 + pi/(2*tanh(pi))
- >>> Sum(1 / (x**2 + 1), (x, 1, oo)).doit()
- -1/2 + pi/(2*tanh(pi))
- >>> Sum(1 / (x**2 + 1), (x, 2, oo)).doit()
- -1 + pi/(2*tanh(pi))
- References
- ==========
- .. [#] http://www.supermath.info/InfiniteSeriesandtheResidueTheorem.pdf
- .. [#] Asmar N.H., Grafakos L. (2018) Residue Theory.
- In: Complex Analysis with Applications.
- Undergraduate Texts in Mathematics. Springer, Cham.
- https://doi.org/10.1007/978-3-319-94063-2_5
- """
- i, a, b = i_a_b
- def is_even_function(numer, denom):
- """Test if the rational function is an even function"""
- numer_even = all(i % 2 == 0 for (i,) in numer.monoms())
- denom_even = all(i % 2 == 0 for (i,) in denom.monoms())
- numer_odd = all(i % 2 == 1 for (i,) in numer.monoms())
- denom_odd = all(i % 2 == 1 for (i,) in denom.monoms())
- return (numer_even and denom_even) or (numer_odd and denom_odd)
- def match_rational(f, i):
- numer, denom = f.as_numer_denom()
- try:
- (numer, denom), opt = parallel_poly_from_expr((numer, denom), i)
- except (PolificationFailed, PolynomialError):
- return None
- return numer, denom
- def get_poles(denom):
- roots = denom.sqf_part().all_roots()
- roots = sift(roots, lambda x: x.is_integer)
- if None in roots:
- return None
- int_roots, nonint_roots = roots[True], roots[False]
- return int_roots, nonint_roots
- def get_shift(denom):
- n = denom.degree(i)
- a = denom.coeff_monomial(i**n)
- b = denom.coeff_monomial(i**(n-1))
- shift = - b / a / n
- return shift
- def get_residue_factor(numer, denom, alternating):
- if not alternating:
- residue_factor = (numer.as_expr() / denom.as_expr()) * cot(S.Pi * i)
- else:
- residue_factor = (numer.as_expr() / denom.as_expr()) * csc(S.Pi * i)
- return residue_factor
- # We don't know how to deal with symbolic constants in summand
- if f.free_symbols - set([i]):
- return None
- if not (a.is_Integer or a in (S.Infinity, S.NegativeInfinity)):
- return None
- if not (b.is_Integer or b in (S.Infinity, S.NegativeInfinity)):
- return None
- # Quick exit heuristic for the sums which doesn't have infinite range
- if a != S.NegativeInfinity and b != S.Infinity:
- return None
- match = match_rational(f, i)
- if match:
- alternating = False
- numer, denom = match
- else:
- match = match_rational(f / S.NegativeOne**i, i)
- if match:
- alternating = True
- numer, denom = match
- else:
- return None
- if denom.degree(i) - numer.degree(i) < 2:
- return None
- if (a, b) == (S.NegativeInfinity, S.Infinity):
- poles = get_poles(denom)
- if poles is None:
- return None
- int_roots, nonint_roots = poles
- if int_roots:
- return None
- residue_factor = get_residue_factor(numer, denom, alternating)
- residues = [residue(residue_factor, i, root) for root in nonint_roots]
- return -S.Pi * sum(residues)
- if not (a.is_finite and b is S.Infinity):
- return None
- if not is_even_function(numer, denom):
- # Try shifting summation and check if the summand can be made
- # and even function from the origin.
- # Sum(f(n), (n, a, b)) => Sum(f(n + s), (n, a - s, b - s))
- shift = get_shift(denom)
- if not shift.is_Integer:
- return None
- if shift == 0:
- return None
- numer = numer.shift(shift)
- denom = denom.shift(shift)
- if not is_even_function(numer, denom):
- return None
- if alternating:
- f = S.NegativeOne**i * (S.NegativeOne**shift * numer.as_expr() / denom.as_expr())
- else:
- f = numer.as_expr() / denom.as_expr()
- return eval_sum_residue(f, (i, a-shift, b-shift))
- poles = get_poles(denom)
- if poles is None:
- return None
- int_roots, nonint_roots = poles
- if int_roots:
- int_roots = [int(root) for root in int_roots]
- int_roots_max = max(int_roots)
- int_roots_min = min(int_roots)
- # Integer valued poles must be next to each other
- # and also symmetric from origin (Because the function is even)
- if not len(int_roots) == int_roots_max - int_roots_min + 1:
- return None
- # Check whether the summation indices contain poles
- if a <= max(int_roots):
- return None
- residue_factor = get_residue_factor(numer, denom, alternating)
- residues = [residue(residue_factor, i, root) for root in int_roots + nonint_roots]
- full_sum = -S.Pi * sum(residues)
- if not int_roots:
- # Compute Sum(f, (i, 0, oo)) by adding a extraneous evaluation
- # at the origin.
- half_sum = (full_sum + f.xreplace({i: 0})) / 2
- # Add and subtract extraneous evaluations
- extraneous_neg = [f.xreplace({i: i0}) for i0 in range(int(a), 0)]
- extraneous_pos = [f.xreplace({i: i0}) for i0 in range(0, int(a))]
- result = half_sum + sum(extraneous_neg) - sum(extraneous_pos)
- return result
- # Compute Sum(f, (i, min(poles) + 1, oo))
- half_sum = full_sum / 2
- # Subtract extraneous evaluations
- extraneous = [f.xreplace({i: i0}) for i0 in range(max(int_roots) + 1, int(a))]
- result = half_sum - sum(extraneous)
- return result
- def _eval_matrix_sum(expression):
- f = expression.function
- for n, limit in enumerate(expression.limits):
- i, a, b = limit
- dif = b - a
- if dif.is_Integer:
- if (dif < 0) == True:
- a, b = b + 1, a - 1
- f = -f
- newf = eval_sum_direct(f, (i, a, b))
- if newf is not None:
- return newf.doit()
- def _dummy_with_inherited_properties_concrete(limits):
- """
- Return a Dummy symbol that inherits as many assumptions as possible
- from the provided symbol and limits.
- If the symbol already has all True assumption shared by the limits
- then return None.
- """
- x, a, b = limits
- l = [a, b]
- assumptions_to_consider = ['extended_nonnegative', 'nonnegative',
- 'extended_nonpositive', 'nonpositive',
- 'extended_positive', 'positive',
- 'extended_negative', 'negative',
- 'integer', 'rational', 'finite',
- 'zero', 'real', 'extended_real']
- assumptions_to_keep = {}
- assumptions_to_add = {}
- for assum in assumptions_to_consider:
- assum_true = x._assumptions.get(assum, None)
- if assum_true:
- assumptions_to_keep[assum] = True
- elif all(getattr(i, 'is_' + assum) for i in l):
- assumptions_to_add[assum] = True
- if assumptions_to_add:
- assumptions_to_keep.update(assumptions_to_add)
- return Dummy('d', **assumptions_to_keep)
|