123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509 |
- """Square-free decomposition algorithms and related tools. """
- from sympy.polys.densearith import (
- dup_neg, dmp_neg,
- dup_sub, dmp_sub,
- dup_mul,
- dup_quo, dmp_quo,
- dup_mul_ground, dmp_mul_ground)
- from sympy.polys.densebasic import (
- dup_strip,
- dup_LC, dmp_ground_LC,
- dmp_zero_p,
- dmp_ground,
- dup_degree, dmp_degree,
- dmp_raise, dmp_inject,
- dup_convert)
- from sympy.polys.densetools import (
- dup_diff, dmp_diff, dmp_diff_in,
- dup_shift, dmp_compose,
- dup_monic, dmp_ground_monic,
- dup_primitive, dmp_ground_primitive)
- from sympy.polys.euclidtools import (
- dup_inner_gcd, dmp_inner_gcd,
- dup_gcd, dmp_gcd,
- dmp_resultant)
- from sympy.polys.galoistools import (
- gf_sqf_list, gf_sqf_part)
- from sympy.polys.polyerrors import (
- MultivariatePolynomialError,
- DomainError)
- def dup_sqf_p(f, K):
- """
- Return ``True`` if ``f`` is a square-free polynomial in ``K[x]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x = ring("x", ZZ)
- >>> R.dup_sqf_p(x**2 - 2*x + 1)
- False
- >>> R.dup_sqf_p(x**2 - 1)
- True
- """
- if not f:
- return True
- else:
- return not dup_degree(dup_gcd(f, dup_diff(f, 1, K), K))
- def dmp_sqf_p(f, u, K):
- """
- Return ``True`` if ``f`` is a square-free polynomial in ``K[X]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x,y = ring("x,y", ZZ)
- >>> R.dmp_sqf_p(x**2 + 2*x*y + y**2)
- False
- >>> R.dmp_sqf_p(x**2 + y**2)
- True
- """
- if dmp_zero_p(f, u):
- return True
- else:
- return not dmp_degree(dmp_gcd(f, dmp_diff(f, 1, u, K), u, K), u)
- def dup_sqf_norm(f, K):
- """
- Square-free norm of ``f`` in ``K[x]``, useful over algebraic domains.
- Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))``
- is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``.
- Examples
- ========
- >>> from sympy.polys import ring, QQ
- >>> from sympy import sqrt
- >>> K = QQ.algebraic_field(sqrt(3))
- >>> R, x = ring("x", K)
- >>> _, X = ring("x", QQ)
- >>> s, f, r = R.dup_sqf_norm(x**2 - 2)
- >>> s == 1
- True
- >>> f == x**2 + K([QQ(-2), QQ(0)])*x + 1
- True
- >>> r == X**4 - 10*X**2 + 1
- True
- """
- if not K.is_Algebraic:
- raise DomainError("ground domain must be algebraic")
- s, g = 0, dmp_raise(K.mod.rep, 1, 0, K.dom)
- while True:
- h, _ = dmp_inject(f, 0, K, front=True)
- r = dmp_resultant(g, h, 1, K.dom)
- if dup_sqf_p(r, K.dom):
- break
- else:
- f, s = dup_shift(f, -K.unit, K), s + 1
- return s, f, r
- def dmp_sqf_norm(f, u, K):
- """
- Square-free norm of ``f`` in ``K[X]``, useful over algebraic domains.
- Returns ``s``, ``f``, ``r``, such that ``g(x) = f(x-sa)`` and ``r(x) = Norm(g(x))``
- is a square-free polynomial over K, where ``a`` is the algebraic extension of ``K``.
- Examples
- ========
- >>> from sympy.polys import ring, QQ
- >>> from sympy import I
- >>> K = QQ.algebraic_field(I)
- >>> R, x, y = ring("x,y", K)
- >>> _, X, Y = ring("x,y", QQ)
- >>> s, f, r = R.dmp_sqf_norm(x*y + y**2)
- >>> s == 1
- True
- >>> f == x*y + y**2 + K([QQ(-1), QQ(0)])*y
- True
- >>> r == X**2*Y**2 + 2*X*Y**3 + Y**4 + Y**2
- True
- """
- if not u:
- return dup_sqf_norm(f, K)
- if not K.is_Algebraic:
- raise DomainError("ground domain must be algebraic")
- g = dmp_raise(K.mod.rep, u + 1, 0, K.dom)
- F = dmp_raise([K.one, -K.unit], u, 0, K)
- s = 0
- while True:
- h, _ = dmp_inject(f, u, K, front=True)
- r = dmp_resultant(g, h, u + 1, K.dom)
- if dmp_sqf_p(r, u, K.dom):
- break
- else:
- f, s = dmp_compose(f, F, u, K), s + 1
- return s, f, r
- def dmp_norm(f, u, K):
- """
- Norm of ``f`` in ``K[X1, ..., Xn]``, often not square-free.
- """
- if not K.is_Algebraic:
- raise DomainError("ground domain must be algebraic")
- g = dmp_raise(K.mod.rep, u + 1, 0, K.dom)
- h, _ = dmp_inject(f, u, K, front=True)
- return dmp_resultant(g, h, u + 1, K.dom)
- def dup_gf_sqf_part(f, K):
- """Compute square-free part of ``f`` in ``GF(p)[x]``. """
- f = dup_convert(f, K, K.dom)
- g = gf_sqf_part(f, K.mod, K.dom)
- return dup_convert(g, K.dom, K)
- def dmp_gf_sqf_part(f, u, K):
- """Compute square-free part of ``f`` in ``GF(p)[X]``. """
- raise NotImplementedError('multivariate polynomials over finite fields')
- def dup_sqf_part(f, K):
- """
- Returns square-free part of a polynomial in ``K[x]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x = ring("x", ZZ)
- >>> R.dup_sqf_part(x**3 - 3*x - 2)
- x**2 - x - 2
- """
- if K.is_FiniteField:
- return dup_gf_sqf_part(f, K)
- if not f:
- return f
- if K.is_negative(dup_LC(f, K)):
- f = dup_neg(f, K)
- gcd = dup_gcd(f, dup_diff(f, 1, K), K)
- sqf = dup_quo(f, gcd, K)
- if K.is_Field:
- return dup_monic(sqf, K)
- else:
- return dup_primitive(sqf, K)[1]
- def dmp_sqf_part(f, u, K):
- """
- Returns square-free part of a polynomial in ``K[X]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x,y = ring("x,y", ZZ)
- >>> R.dmp_sqf_part(x**3 + 2*x**2*y + x*y**2)
- x**2 + x*y
- """
- if not u:
- return dup_sqf_part(f, K)
- if K.is_FiniteField:
- return dmp_gf_sqf_part(f, u, K)
- if dmp_zero_p(f, u):
- return f
- if K.is_negative(dmp_ground_LC(f, u, K)):
- f = dmp_neg(f, u, K)
- gcd = f
- for i in range(u+1):
- gcd = dmp_gcd(gcd, dmp_diff_in(f, 1, i, u, K), u, K)
- sqf = dmp_quo(f, gcd, u, K)
- if K.is_Field:
- return dmp_ground_monic(sqf, u, K)
- else:
- return dmp_ground_primitive(sqf, u, K)[1]
- def dup_gf_sqf_list(f, K, all=False):
- """Compute square-free decomposition of ``f`` in ``GF(p)[x]``. """
- f = dup_convert(f, K, K.dom)
- coeff, factors = gf_sqf_list(f, K.mod, K.dom, all=all)
- for i, (f, k) in enumerate(factors):
- factors[i] = (dup_convert(f, K.dom, K), k)
- return K.convert(coeff, K.dom), factors
- def dmp_gf_sqf_list(f, u, K, all=False):
- """Compute square-free decomposition of ``f`` in ``GF(p)[X]``. """
- raise NotImplementedError('multivariate polynomials over finite fields')
- def dup_sqf_list(f, K, all=False):
- """
- Return square-free decomposition of a polynomial in ``K[x]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x = ring("x", ZZ)
- >>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16
- >>> R.dup_sqf_list(f)
- (2, [(x + 1, 2), (x + 2, 3)])
- >>> R.dup_sqf_list(f, all=True)
- (2, [(1, 1), (x + 1, 2), (x + 2, 3)])
- """
- if K.is_FiniteField:
- return dup_gf_sqf_list(f, K, all=all)
- if K.is_Field:
- coeff = dup_LC(f, K)
- f = dup_monic(f, K)
- else:
- coeff, f = dup_primitive(f, K)
- if K.is_negative(dup_LC(f, K)):
- f = dup_neg(f, K)
- coeff = -coeff
- if dup_degree(f) <= 0:
- return coeff, []
- result, i = [], 1
- h = dup_diff(f, 1, K)
- g, p, q = dup_inner_gcd(f, h, K)
- while True:
- d = dup_diff(p, 1, K)
- h = dup_sub(q, d, K)
- if not h:
- result.append((p, i))
- break
- g, p, q = dup_inner_gcd(p, h, K)
- if all or dup_degree(g) > 0:
- result.append((g, i))
- i += 1
- return coeff, result
- def dup_sqf_list_include(f, K, all=False):
- """
- Return square-free decomposition of a polynomial in ``K[x]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x = ring("x", ZZ)
- >>> f = 2*x**5 + 16*x**4 + 50*x**3 + 76*x**2 + 56*x + 16
- >>> R.dup_sqf_list_include(f)
- [(2, 1), (x + 1, 2), (x + 2, 3)]
- >>> R.dup_sqf_list_include(f, all=True)
- [(2, 1), (x + 1, 2), (x + 2, 3)]
- """
- coeff, factors = dup_sqf_list(f, K, all=all)
- if factors and factors[0][1] == 1:
- g = dup_mul_ground(factors[0][0], coeff, K)
- return [(g, 1)] + factors[1:]
- else:
- g = dup_strip([coeff])
- return [(g, 1)] + factors
- def dmp_sqf_list(f, u, K, all=False):
- """
- Return square-free decomposition of a polynomial in ``K[X]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x,y = ring("x,y", ZZ)
- >>> f = x**5 + 2*x**4*y + x**3*y**2
- >>> R.dmp_sqf_list(f)
- (1, [(x + y, 2), (x, 3)])
- >>> R.dmp_sqf_list(f, all=True)
- (1, [(1, 1), (x + y, 2), (x, 3)])
- """
- if not u:
- return dup_sqf_list(f, K, all=all)
- if K.is_FiniteField:
- return dmp_gf_sqf_list(f, u, K, all=all)
- if K.is_Field:
- coeff = dmp_ground_LC(f, u, K)
- f = dmp_ground_monic(f, u, K)
- else:
- coeff, f = dmp_ground_primitive(f, u, K)
- if K.is_negative(dmp_ground_LC(f, u, K)):
- f = dmp_neg(f, u, K)
- coeff = -coeff
- if dmp_degree(f, u) <= 0:
- return coeff, []
- result, i = [], 1
- h = dmp_diff(f, 1, u, K)
- g, p, q = dmp_inner_gcd(f, h, u, K)
- while True:
- d = dmp_diff(p, 1, u, K)
- h = dmp_sub(q, d, u, K)
- if dmp_zero_p(h, u):
- result.append((p, i))
- break
- g, p, q = dmp_inner_gcd(p, h, u, K)
- if all or dmp_degree(g, u) > 0:
- result.append((g, i))
- i += 1
- return coeff, result
- def dmp_sqf_list_include(f, u, K, all=False):
- """
- Return square-free decomposition of a polynomial in ``K[x]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x,y = ring("x,y", ZZ)
- >>> f = x**5 + 2*x**4*y + x**3*y**2
- >>> R.dmp_sqf_list_include(f)
- [(1, 1), (x + y, 2), (x, 3)]
- >>> R.dmp_sqf_list_include(f, all=True)
- [(1, 1), (x + y, 2), (x, 3)]
- """
- if not u:
- return dup_sqf_list_include(f, K, all=all)
- coeff, factors = dmp_sqf_list(f, u, K, all=all)
- if factors and factors[0][1] == 1:
- g = dmp_mul_ground(factors[0][0], coeff, u, K)
- return [(g, 1)] + factors[1:]
- else:
- g = dmp_ground(coeff, u)
- return [(g, 1)] + factors
- def dup_gff_list(f, K):
- """
- Compute greatest factorial factorization of ``f`` in ``K[x]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x = ring("x", ZZ)
- >>> R.dup_gff_list(x**5 + 2*x**4 - x**3 - 2*x**2)
- [(x, 1), (x + 2, 4)]
- """
- if not f:
- raise ValueError("greatest factorial factorization doesn't exist for a zero polynomial")
- f = dup_monic(f, K)
- if not dup_degree(f):
- return []
- else:
- g = dup_gcd(f, dup_shift(f, K.one, K), K)
- H = dup_gff_list(g, K)
- for i, (h, k) in enumerate(H):
- g = dup_mul(g, dup_shift(h, -K(k), K), K)
- H[i] = (h, k + 1)
- f = dup_quo(f, g, K)
- if not dup_degree(f):
- return H
- else:
- return [(f, 1)] + H
- def dmp_gff_list(f, u, K):
- """
- Compute greatest factorial factorization of ``f`` in ``K[X]``.
- Examples
- ========
- >>> from sympy.polys import ring, ZZ
- >>> R, x,y = ring("x,y", ZZ)
- """
- if not u:
- return dup_gff_list(f, K)
- else:
- raise MultivariatePolynomialError(f)
|