123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262 |
- #. Copyright (C) 2005-2010 Gregory P. Smith (greg@krypto.org)
- # Licensed to PSF under a Contributor Agreement.
- #
- __doc__ = """hashlib module - A common interface to many hash functions.
- new(name, data=b'', **kwargs) - returns a new hash object implementing the
- given hash function; initializing the hash
- using the given binary data.
- Named constructor functions are also available, these are faster
- than using new(name):
- md5(), sha1(), sha224(), sha256(), sha384(), sha512(), blake2b(), blake2s(),
- sha3_224, sha3_256, sha3_384, sha3_512, shake_128, and shake_256.
- More algorithms may be available on your platform but the above are guaranteed
- to exist. See the algorithms_guaranteed and algorithms_available attributes
- to find out what algorithm names can be passed to new().
- NOTE: If you want the adler32 or crc32 hash functions they are available in
- the zlib module.
- Choose your hash function wisely. Some have known collision weaknesses.
- sha384 and sha512 will be slow on 32 bit platforms.
- Hash objects have these methods:
- - update(data): Update the hash object with the bytes in data. Repeated calls
- are equivalent to a single call with the concatenation of all
- the arguments.
- - digest(): Return the digest of the bytes passed to the update() method
- so far as a bytes object.
- - hexdigest(): Like digest() except the digest is returned as a string
- of double length, containing only hexadecimal digits.
- - copy(): Return a copy (clone) of the hash object. This can be used to
- efficiently compute the digests of datas that share a common
- initial substring.
- For example, to obtain the digest of the byte string 'Nobody inspects the
- spammish repetition':
- >>> import hashlib
- >>> m = hashlib.md5()
- >>> m.update(b"Nobody inspects")
- >>> m.update(b" the spammish repetition")
- >>> m.digest()
- b'\\xbbd\\x9c\\x83\\xdd\\x1e\\xa5\\xc9\\xd9\\xde\\xc9\\xa1\\x8d\\xf0\\xff\\xe9'
- More condensed:
- >>> hashlib.sha224(b"Nobody inspects the spammish repetition").hexdigest()
- 'a4337bc45a8fc544c03f52dc550cd6e1e87021bc896588bd79e901e2'
- """
- # This tuple and __get_builtin_constructor() must be modified if a new
- # always available algorithm is added.
- __always_supported = ('md5', 'sha1', 'sha224', 'sha256', 'sha384', 'sha512',
- 'blake2b', 'blake2s',
- 'sha3_224', 'sha3_256', 'sha3_384', 'sha3_512',
- 'shake_128', 'shake_256')
- algorithms_guaranteed = set(__always_supported)
- algorithms_available = set(__always_supported)
- __all__ = __always_supported + ('new', 'algorithms_guaranteed',
- 'algorithms_available', 'pbkdf2_hmac')
- __builtin_constructor_cache = {}
- # Prefer our blake2 implementation
- # OpenSSL 1.1.0 comes with a limited implementation of blake2b/s. The OpenSSL
- # implementations neither support keyed blake2 (blake2 MAC) nor advanced
- # features like salt, personalization, or tree hashing. OpenSSL hash-only
- # variants are available as 'blake2b512' and 'blake2s256', though.
- __block_openssl_constructor = {
- 'blake2b', 'blake2s',
- }
- def __get_builtin_constructor(name):
- cache = __builtin_constructor_cache
- constructor = cache.get(name)
- if constructor is not None:
- return constructor
- try:
- if name in {'SHA1', 'sha1'}:
- import _sha1
- cache['SHA1'] = cache['sha1'] = _sha1.sha1
- elif name in {'MD5', 'md5'}:
- import _md5
- cache['MD5'] = cache['md5'] = _md5.md5
- elif name in {'SHA256', 'sha256', 'SHA224', 'sha224'}:
- import _sha256
- cache['SHA224'] = cache['sha224'] = _sha256.sha224
- cache['SHA256'] = cache['sha256'] = _sha256.sha256
- elif name in {'SHA512', 'sha512', 'SHA384', 'sha384'}:
- import _sha512
- cache['SHA384'] = cache['sha384'] = _sha512.sha384
- cache['SHA512'] = cache['sha512'] = _sha512.sha512
- elif name in {'blake2b', 'blake2s'}:
- import _blake2
- cache['blake2b'] = _blake2.blake2b
- cache['blake2s'] = _blake2.blake2s
- elif name in {'sha3_224', 'sha3_256', 'sha3_384', 'sha3_512'}:
- import _sha3
- cache['sha3_224'] = _sha3.sha3_224
- cache['sha3_256'] = _sha3.sha3_256
- cache['sha3_384'] = _sha3.sha3_384
- cache['sha3_512'] = _sha3.sha3_512
- elif name in {'shake_128', 'shake_256'}:
- import _sha3
- cache['shake_128'] = _sha3.shake_128
- cache['shake_256'] = _sha3.shake_256
- except ImportError:
- pass # no extension module, this hash is unsupported.
- constructor = cache.get(name)
- if constructor is not None:
- return constructor
- raise ValueError('unsupported hash type ' + name)
- def __get_openssl_constructor(name):
- if name in __block_openssl_constructor:
- # Prefer our builtin blake2 implementation.
- return __get_builtin_constructor(name)
- try:
- # MD5, SHA1, and SHA2 are in all supported OpenSSL versions
- # SHA3/shake are available in OpenSSL 1.1.1+
- f = getattr(_hashlib, 'openssl_' + name)
- # Allow the C module to raise ValueError. The function will be
- # defined but the hash not actually available. Don't fall back to
- # builtin if the current security policy blocks a digest, bpo#40695.
- f(usedforsecurity=False)
- # Use the C function directly (very fast)
- return f
- except (AttributeError, ValueError):
- return __get_builtin_constructor(name)
- def __py_new(name, data=b'', **kwargs):
- """new(name, data=b'', **kwargs) - Return a new hashing object using the
- named algorithm; optionally initialized with data (which must be
- a bytes-like object).
- """
- return __get_builtin_constructor(name)(data, **kwargs)
- def __hash_new(name, data=b'', **kwargs):
- """new(name, data=b'') - Return a new hashing object using the named algorithm;
- optionally initialized with data (which must be a bytes-like object).
- """
- if name in __block_openssl_constructor:
- # Prefer our builtin blake2 implementation.
- return __get_builtin_constructor(name)(data, **kwargs)
- try:
- return _hashlib.new(name, data, **kwargs)
- except ValueError:
- # If the _hashlib module (OpenSSL) doesn't support the named
- # hash, try using our builtin implementations.
- # This allows for SHA224/256 and SHA384/512 support even though
- # the OpenSSL library prior to 0.9.8 doesn't provide them.
- return __get_builtin_constructor(name)(data)
- try:
- import _hashlib
- new = __hash_new
- __get_hash = __get_openssl_constructor
- algorithms_available = algorithms_available.union(
- _hashlib.openssl_md_meth_names)
- except ImportError:
- new = __py_new
- __get_hash = __get_builtin_constructor
- try:
- # OpenSSL's PKCS5_PBKDF2_HMAC requires OpenSSL 1.0+ with HMAC and SHA
- from _hashlib import pbkdf2_hmac
- except ImportError:
- _trans_5C = bytes((x ^ 0x5C) for x in range(256))
- _trans_36 = bytes((x ^ 0x36) for x in range(256))
- def pbkdf2_hmac(hash_name, password, salt, iterations, dklen=None):
- """Password based key derivation function 2 (PKCS #5 v2.0)
- This Python implementations based on the hmac module about as fast
- as OpenSSL's PKCS5_PBKDF2_HMAC for short passwords and much faster
- for long passwords.
- """
- if not isinstance(hash_name, str):
- raise TypeError(hash_name)
- if not isinstance(password, (bytes, bytearray)):
- password = bytes(memoryview(password))
- if not isinstance(salt, (bytes, bytearray)):
- salt = bytes(memoryview(salt))
- # Fast inline HMAC implementation
- inner = new(hash_name)
- outer = new(hash_name)
- blocksize = getattr(inner, 'block_size', 64)
- if len(password) > blocksize:
- password = new(hash_name, password).digest()
- password = password + b'\x00' * (blocksize - len(password))
- inner.update(password.translate(_trans_36))
- outer.update(password.translate(_trans_5C))
- def prf(msg, inner=inner, outer=outer):
- # PBKDF2_HMAC uses the password as key. We can re-use the same
- # digest objects and just update copies to skip initialization.
- icpy = inner.copy()
- ocpy = outer.copy()
- icpy.update(msg)
- ocpy.update(icpy.digest())
- return ocpy.digest()
- if iterations < 1:
- raise ValueError(iterations)
- if dklen is None:
- dklen = outer.digest_size
- if dklen < 1:
- raise ValueError(dklen)
- dkey = b''
- loop = 1
- from_bytes = int.from_bytes
- while len(dkey) < dklen:
- prev = prf(salt + loop.to_bytes(4, 'big'))
- # endianness doesn't matter here as long to / from use the same
- rkey = int.from_bytes(prev, 'big')
- for i in range(iterations - 1):
- prev = prf(prev)
- # rkey = rkey ^ prev
- rkey ^= from_bytes(prev, 'big')
- loop += 1
- dkey += rkey.to_bytes(inner.digest_size, 'big')
- return dkey[:dklen]
- try:
- # OpenSSL's scrypt requires OpenSSL 1.1+
- from _hashlib import scrypt
- except ImportError:
- pass
- for __func_name in __always_supported:
- # try them all, some may not work due to the OpenSSL
- # version not supporting that algorithm.
- try:
- globals()[__func_name] = __get_hash(__func_name)
- except ValueError:
- import logging
- logging.exception('code for hash %s was not found.', __func_name)
- # Cleanup locals()
- del __always_supported, __func_name, __get_hash
- del __py_new, __hash_new, __get_openssl_constructor
|