123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386 |
- # Copyright 2004-2005 Elemental Security, Inc. All Rights Reserved.
- # Licensed to PSF under a Contributor Agreement.
- # Pgen imports
- from . import grammar, token, tokenize
- class PgenGrammar(grammar.Grammar):
- pass
- class ParserGenerator(object):
- def __init__(self, filename, stream=None):
- close_stream = None
- if stream is None:
- stream = open(filename)
- close_stream = stream.close
- self.filename = filename
- self.stream = stream
- self.generator = tokenize.generate_tokens(stream.readline)
- self.gettoken() # Initialize lookahead
- self.dfas, self.startsymbol = self.parse()
- if close_stream is not None:
- close_stream()
- self.first = {} # map from symbol name to set of tokens
- self.addfirstsets()
- def make_grammar(self):
- c = PgenGrammar()
- names = list(self.dfas.keys())
- names.sort()
- names.remove(self.startsymbol)
- names.insert(0, self.startsymbol)
- for name in names:
- i = 256 + len(c.symbol2number)
- c.symbol2number[name] = i
- c.number2symbol[i] = name
- for name in names:
- dfa = self.dfas[name]
- states = []
- for state in dfa:
- arcs = []
- for label, next in sorted(state.arcs.items()):
- arcs.append((self.make_label(c, label), dfa.index(next)))
- if state.isfinal:
- arcs.append((0, dfa.index(state)))
- states.append(arcs)
- c.states.append(states)
- c.dfas[c.symbol2number[name]] = (states, self.make_first(c, name))
- c.start = c.symbol2number[self.startsymbol]
- return c
- def make_first(self, c, name):
- rawfirst = self.first[name]
- first = {}
- for label in sorted(rawfirst):
- ilabel = self.make_label(c, label)
- ##assert ilabel not in first # XXX failed on <> ... !=
- first[ilabel] = 1
- return first
- def make_label(self, c, label):
- # XXX Maybe this should be a method on a subclass of converter?
- ilabel = len(c.labels)
- if label[0].isalpha():
- # Either a symbol name or a named token
- if label in c.symbol2number:
- # A symbol name (a non-terminal)
- if label in c.symbol2label:
- return c.symbol2label[label]
- else:
- c.labels.append((c.symbol2number[label], None))
- c.symbol2label[label] = ilabel
- return ilabel
- else:
- # A named token (NAME, NUMBER, STRING)
- itoken = getattr(token, label, None)
- assert isinstance(itoken, int), label
- assert itoken in token.tok_name, label
- if itoken in c.tokens:
- return c.tokens[itoken]
- else:
- c.labels.append((itoken, None))
- c.tokens[itoken] = ilabel
- return ilabel
- else:
- # Either a keyword or an operator
- assert label[0] in ('"', "'"), label
- value = eval(label)
- if value[0].isalpha():
- # A keyword
- if value in c.keywords:
- return c.keywords[value]
- else:
- c.labels.append((token.NAME, value))
- c.keywords[value] = ilabel
- return ilabel
- else:
- # An operator (any non-numeric token)
- itoken = grammar.opmap[value] # Fails if unknown token
- if itoken in c.tokens:
- return c.tokens[itoken]
- else:
- c.labels.append((itoken, None))
- c.tokens[itoken] = ilabel
- return ilabel
- def addfirstsets(self):
- names = list(self.dfas.keys())
- names.sort()
- for name in names:
- if name not in self.first:
- self.calcfirst(name)
- #print name, self.first[name].keys()
- def calcfirst(self, name):
- dfa = self.dfas[name]
- self.first[name] = None # dummy to detect left recursion
- state = dfa[0]
- totalset = {}
- overlapcheck = {}
- for label, next in state.arcs.items():
- if label in self.dfas:
- if label in self.first:
- fset = self.first[label]
- if fset is None:
- raise ValueError("recursion for rule %r" % name)
- else:
- self.calcfirst(label)
- fset = self.first[label]
- totalset.update(fset)
- overlapcheck[label] = fset
- else:
- totalset[label] = 1
- overlapcheck[label] = {label: 1}
- inverse = {}
- for label, itsfirst in overlapcheck.items():
- for symbol in itsfirst:
- if symbol in inverse:
- raise ValueError("rule %s is ambiguous; %s is in the"
- " first sets of %s as well as %s" %
- (name, symbol, label, inverse[symbol]))
- inverse[symbol] = label
- self.first[name] = totalset
- def parse(self):
- dfas = {}
- startsymbol = None
- # MSTART: (NEWLINE | RULE)* ENDMARKER
- while self.type != token.ENDMARKER:
- while self.type == token.NEWLINE:
- self.gettoken()
- # RULE: NAME ':' RHS NEWLINE
- name = self.expect(token.NAME)
- self.expect(token.OP, ":")
- a, z = self.parse_rhs()
- self.expect(token.NEWLINE)
- #self.dump_nfa(name, a, z)
- dfa = self.make_dfa(a, z)
- #self.dump_dfa(name, dfa)
- oldlen = len(dfa)
- self.simplify_dfa(dfa)
- newlen = len(dfa)
- dfas[name] = dfa
- #print name, oldlen, newlen
- if startsymbol is None:
- startsymbol = name
- return dfas, startsymbol
- def make_dfa(self, start, finish):
- # To turn an NFA into a DFA, we define the states of the DFA
- # to correspond to *sets* of states of the NFA. Then do some
- # state reduction. Let's represent sets as dicts with 1 for
- # values.
- assert isinstance(start, NFAState)
- assert isinstance(finish, NFAState)
- def closure(state):
- base = {}
- addclosure(state, base)
- return base
- def addclosure(state, base):
- assert isinstance(state, NFAState)
- if state in base:
- return
- base[state] = 1
- for label, next in state.arcs:
- if label is None:
- addclosure(next, base)
- states = [DFAState(closure(start), finish)]
- for state in states: # NB states grows while we're iterating
- arcs = {}
- for nfastate in state.nfaset:
- for label, next in nfastate.arcs:
- if label is not None:
- addclosure(next, arcs.setdefault(label, {}))
- for label, nfaset in sorted(arcs.items()):
- for st in states:
- if st.nfaset == nfaset:
- break
- else:
- st = DFAState(nfaset, finish)
- states.append(st)
- state.addarc(st, label)
- return states # List of DFAState instances; first one is start
- def dump_nfa(self, name, start, finish):
- print("Dump of NFA for", name)
- todo = [start]
- for i, state in enumerate(todo):
- print(" State", i, state is finish and "(final)" or "")
- for label, next in state.arcs:
- if next in todo:
- j = todo.index(next)
- else:
- j = len(todo)
- todo.append(next)
- if label is None:
- print(" -> %d" % j)
- else:
- print(" %s -> %d" % (label, j))
- def dump_dfa(self, name, dfa):
- print("Dump of DFA for", name)
- for i, state in enumerate(dfa):
- print(" State", i, state.isfinal and "(final)" or "")
- for label, next in sorted(state.arcs.items()):
- print(" %s -> %d" % (label, dfa.index(next)))
- def simplify_dfa(self, dfa):
- # This is not theoretically optimal, but works well enough.
- # Algorithm: repeatedly look for two states that have the same
- # set of arcs (same labels pointing to the same nodes) and
- # unify them, until things stop changing.
- # dfa is a list of DFAState instances
- changes = True
- while changes:
- changes = False
- for i, state_i in enumerate(dfa):
- for j in range(i+1, len(dfa)):
- state_j = dfa[j]
- if state_i == state_j:
- #print " unify", i, j
- del dfa[j]
- for state in dfa:
- state.unifystate(state_j, state_i)
- changes = True
- break
- def parse_rhs(self):
- # RHS: ALT ('|' ALT)*
- a, z = self.parse_alt()
- if self.value != "|":
- return a, z
- else:
- aa = NFAState()
- zz = NFAState()
- aa.addarc(a)
- z.addarc(zz)
- while self.value == "|":
- self.gettoken()
- a, z = self.parse_alt()
- aa.addarc(a)
- z.addarc(zz)
- return aa, zz
- def parse_alt(self):
- # ALT: ITEM+
- a, b = self.parse_item()
- while (self.value in ("(", "[") or
- self.type in (token.NAME, token.STRING)):
- c, d = self.parse_item()
- b.addarc(c)
- b = d
- return a, b
- def parse_item(self):
- # ITEM: '[' RHS ']' | ATOM ['+' | '*']
- if self.value == "[":
- self.gettoken()
- a, z = self.parse_rhs()
- self.expect(token.OP, "]")
- a.addarc(z)
- return a, z
- else:
- a, z = self.parse_atom()
- value = self.value
- if value not in ("+", "*"):
- return a, z
- self.gettoken()
- z.addarc(a)
- if value == "+":
- return a, z
- else:
- return a, a
- def parse_atom(self):
- # ATOM: '(' RHS ')' | NAME | STRING
- if self.value == "(":
- self.gettoken()
- a, z = self.parse_rhs()
- self.expect(token.OP, ")")
- return a, z
- elif self.type in (token.NAME, token.STRING):
- a = NFAState()
- z = NFAState()
- a.addarc(z, self.value)
- self.gettoken()
- return a, z
- else:
- self.raise_error("expected (...) or NAME or STRING, got %s/%s",
- self.type, self.value)
- def expect(self, type, value=None):
- if self.type != type or (value is not None and self.value != value):
- self.raise_error("expected %s/%s, got %s/%s",
- type, value, self.type, self.value)
- value = self.value
- self.gettoken()
- return value
- def gettoken(self):
- tup = next(self.generator)
- while tup[0] in (tokenize.COMMENT, tokenize.NL):
- tup = next(self.generator)
- self.type, self.value, self.begin, self.end, self.line = tup
- #print token.tok_name[self.type], repr(self.value)
- def raise_error(self, msg, *args):
- if args:
- try:
- msg = msg % args
- except:
- msg = " ".join([msg] + list(map(str, args)))
- raise SyntaxError(msg, (self.filename, self.end[0],
- self.end[1], self.line))
- class NFAState(object):
- def __init__(self):
- self.arcs = [] # list of (label, NFAState) pairs
- def addarc(self, next, label=None):
- assert label is None or isinstance(label, str)
- assert isinstance(next, NFAState)
- self.arcs.append((label, next))
- class DFAState(object):
- def __init__(self, nfaset, final):
- assert isinstance(nfaset, dict)
- assert isinstance(next(iter(nfaset)), NFAState)
- assert isinstance(final, NFAState)
- self.nfaset = nfaset
- self.isfinal = final in nfaset
- self.arcs = {} # map from label to DFAState
- def addarc(self, next, label):
- assert isinstance(label, str)
- assert label not in self.arcs
- assert isinstance(next, DFAState)
- self.arcs[label] = next
- def unifystate(self, old, new):
- for label, next in self.arcs.items():
- if next is old:
- self.arcs[label] = new
- def __eq__(self, other):
- # Equality test -- ignore the nfaset instance variable
- assert isinstance(other, DFAState)
- if self.isfinal != other.isfinal:
- return False
- # Can't just return self.arcs == other.arcs, because that
- # would invoke this method recursively, with cycles...
- if len(self.arcs) != len(other.arcs):
- return False
- for label, next in self.arcs.items():
- if next is not other.arcs.get(label):
- return False
- return True
- __hash__ = None # For Py3 compatibility.
- def generate_grammar(filename="Grammar.txt"):
- p = ParserGenerator(filename)
- return p.make_grammar()
|