123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393 |
- # Copyright 2007 Google, Inc. All Rights Reserved.
- # Licensed to PSF under a Contributor Agreement.
- """Abstract Base Classes (ABCs) for numbers, according to PEP 3141.
- TODO: Fill out more detailed documentation on the operators."""
- from abc import ABCMeta, abstractmethod
- __all__ = ["Number", "Complex", "Real", "Rational", "Integral"]
- class Number(metaclass=ABCMeta):
- """All numbers inherit from this class.
- If you just want to check if an argument x is a number, without
- caring what kind, use isinstance(x, Number).
- """
- __slots__ = ()
- # Concrete numeric types must provide their own hash implementation
- __hash__ = None
- ## Notes on Decimal
- ## ----------------
- ## Decimal has all of the methods specified by the Real abc, but it should
- ## not be registered as a Real because decimals do not interoperate with
- ## binary floats (i.e. Decimal('3.14') + 2.71828 is undefined). But,
- ## abstract reals are expected to interoperate (i.e. R1 + R2 should be
- ## expected to work if R1 and R2 are both Reals).
- class Complex(Number):
- """Complex defines the operations that work on the builtin complex type.
- In short, those are: a conversion to complex, .real, .imag, +, -,
- *, /, **, abs(), .conjugate, ==, and !=.
- If it is given heterogeneous arguments, and doesn't have special
- knowledge about them, it should fall back to the builtin complex
- type as described below.
- """
- __slots__ = ()
- @abstractmethod
- def __complex__(self):
- """Return a builtin complex instance. Called for complex(self)."""
- def __bool__(self):
- """True if self != 0. Called for bool(self)."""
- return self != 0
- @property
- @abstractmethod
- def real(self):
- """Retrieve the real component of this number.
- This should subclass Real.
- """
- raise NotImplementedError
- @property
- @abstractmethod
- def imag(self):
- """Retrieve the imaginary component of this number.
- This should subclass Real.
- """
- raise NotImplementedError
- @abstractmethod
- def __add__(self, other):
- """self + other"""
- raise NotImplementedError
- @abstractmethod
- def __radd__(self, other):
- """other + self"""
- raise NotImplementedError
- @abstractmethod
- def __neg__(self):
- """-self"""
- raise NotImplementedError
- @abstractmethod
- def __pos__(self):
- """+self"""
- raise NotImplementedError
- def __sub__(self, other):
- """self - other"""
- return self + -other
- def __rsub__(self, other):
- """other - self"""
- return -self + other
- @abstractmethod
- def __mul__(self, other):
- """self * other"""
- raise NotImplementedError
- @abstractmethod
- def __rmul__(self, other):
- """other * self"""
- raise NotImplementedError
- @abstractmethod
- def __truediv__(self, other):
- """self / other: Should promote to float when necessary."""
- raise NotImplementedError
- @abstractmethod
- def __rtruediv__(self, other):
- """other / self"""
- raise NotImplementedError
- @abstractmethod
- def __pow__(self, exponent):
- """self**exponent; should promote to float or complex when necessary."""
- raise NotImplementedError
- @abstractmethod
- def __rpow__(self, base):
- """base ** self"""
- raise NotImplementedError
- @abstractmethod
- def __abs__(self):
- """Returns the Real distance from 0. Called for abs(self)."""
- raise NotImplementedError
- @abstractmethod
- def conjugate(self):
- """(x+y*i).conjugate() returns (x-y*i)."""
- raise NotImplementedError
- @abstractmethod
- def __eq__(self, other):
- """self == other"""
- raise NotImplementedError
- Complex.register(complex)
- class Real(Complex):
- """To Complex, Real adds the operations that work on real numbers.
- In short, those are: a conversion to float, trunc(), divmod,
- %, <, <=, >, and >=.
- Real also provides defaults for the derived operations.
- """
- __slots__ = ()
- @abstractmethod
- def __float__(self):
- """Any Real can be converted to a native float object.
- Called for float(self)."""
- raise NotImplementedError
- @abstractmethod
- def __trunc__(self):
- """trunc(self): Truncates self to an Integral.
- Returns an Integral i such that:
- * i>0 iff self>0;
- * abs(i) <= abs(self);
- * for any Integral j satisfying the first two conditions,
- abs(i) >= abs(j) [i.e. i has "maximal" abs among those].
- i.e. "truncate towards 0".
- """
- raise NotImplementedError
- @abstractmethod
- def __floor__(self):
- """Finds the greatest Integral <= self."""
- raise NotImplementedError
- @abstractmethod
- def __ceil__(self):
- """Finds the least Integral >= self."""
- raise NotImplementedError
- @abstractmethod
- def __round__(self, ndigits=None):
- """Rounds self to ndigits decimal places, defaulting to 0.
- If ndigits is omitted or None, returns an Integral, otherwise
- returns a Real. Rounds half toward even.
- """
- raise NotImplementedError
- def __divmod__(self, other):
- """divmod(self, other): The pair (self // other, self % other).
- Sometimes this can be computed faster than the pair of
- operations.
- """
- return (self // other, self % other)
- def __rdivmod__(self, other):
- """divmod(other, self): The pair (self // other, self % other).
- Sometimes this can be computed faster than the pair of
- operations.
- """
- return (other // self, other % self)
- @abstractmethod
- def __floordiv__(self, other):
- """self // other: The floor() of self/other."""
- raise NotImplementedError
- @abstractmethod
- def __rfloordiv__(self, other):
- """other // self: The floor() of other/self."""
- raise NotImplementedError
- @abstractmethod
- def __mod__(self, other):
- """self % other"""
- raise NotImplementedError
- @abstractmethod
- def __rmod__(self, other):
- """other % self"""
- raise NotImplementedError
- @abstractmethod
- def __lt__(self, other):
- """self < other
- < on Reals defines a total ordering, except perhaps for NaN."""
- raise NotImplementedError
- @abstractmethod
- def __le__(self, other):
- """self <= other"""
- raise NotImplementedError
- # Concrete implementations of Complex abstract methods.
- def __complex__(self):
- """complex(self) == complex(float(self), 0)"""
- return complex(float(self))
- @property
- def real(self):
- """Real numbers are their real component."""
- return +self
- @property
- def imag(self):
- """Real numbers have no imaginary component."""
- return 0
- def conjugate(self):
- """Conjugate is a no-op for Reals."""
- return +self
- Real.register(float)
- class Rational(Real):
- """.numerator and .denominator should be in lowest terms."""
- __slots__ = ()
- @property
- @abstractmethod
- def numerator(self):
- raise NotImplementedError
- @property
- @abstractmethod
- def denominator(self):
- raise NotImplementedError
- # Concrete implementation of Real's conversion to float.
- def __float__(self):
- """float(self) = self.numerator / self.denominator
- It's important that this conversion use the integer's "true"
- division rather than casting one side to float before dividing
- so that ratios of huge integers convert without overflowing.
- """
- return self.numerator / self.denominator
- class Integral(Rational):
- """Integral adds methods that work on integral numbers.
- In short, these are conversion to int, pow with modulus, and the
- bit-string operations.
- """
- __slots__ = ()
- @abstractmethod
- def __int__(self):
- """int(self)"""
- raise NotImplementedError
- def __index__(self):
- """Called whenever an index is needed, such as in slicing"""
- return int(self)
- @abstractmethod
- def __pow__(self, exponent, modulus=None):
- """self ** exponent % modulus, but maybe faster.
- Accept the modulus argument if you want to support the
- 3-argument version of pow(). Raise a TypeError if exponent < 0
- or any argument isn't Integral. Otherwise, just implement the
- 2-argument version described in Complex.
- """
- raise NotImplementedError
- @abstractmethod
- def __lshift__(self, other):
- """self << other"""
- raise NotImplementedError
- @abstractmethod
- def __rlshift__(self, other):
- """other << self"""
- raise NotImplementedError
- @abstractmethod
- def __rshift__(self, other):
- """self >> other"""
- raise NotImplementedError
- @abstractmethod
- def __rrshift__(self, other):
- """other >> self"""
- raise NotImplementedError
- @abstractmethod
- def __and__(self, other):
- """self & other"""
- raise NotImplementedError
- @abstractmethod
- def __rand__(self, other):
- """other & self"""
- raise NotImplementedError
- @abstractmethod
- def __xor__(self, other):
- """self ^ other"""
- raise NotImplementedError
- @abstractmethod
- def __rxor__(self, other):
- """other ^ self"""
- raise NotImplementedError
- @abstractmethod
- def __or__(self, other):
- """self | other"""
- raise NotImplementedError
- @abstractmethod
- def __ror__(self, other):
- """other | self"""
- raise NotImplementedError
- @abstractmethod
- def __invert__(self):
- """~self"""
- raise NotImplementedError
- # Concrete implementations of Rational and Real abstract methods.
- def __float__(self):
- """float(self) == float(int(self))"""
- return float(int(self))
- @property
- def numerator(self):
- """Integers are their own numerators."""
- return +self
- @property
- def denominator(self):
- """Integers have a denominator of 1."""
- return 1
- Integral.register(int)
|