123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747 |
- import warnings
- cimport cython
- import numpy as np
- cimport numpy as cnp
- from numpy cimport (
- float32_t,
- float64_t,
- int8_t,
- int16_t,
- int32_t,
- int64_t,
- intp_t,
- ndarray,
- uint8_t,
- uint16_t,
- uint32_t,
- uint64_t,
- )
- cnp.import_array()
- from pandas._libs cimport util
- from pandas._libs.hashtable cimport HashTable
- from pandas._libs.tslibs.nattype cimport c_NaT as NaT
- from pandas._libs.tslibs.period cimport is_period_object
- from pandas._libs.tslibs.timedeltas cimport _Timedelta
- from pandas._libs.tslibs.timestamps cimport _Timestamp
- from pandas._libs import (
- algos,
- hashtable as _hash,
- )
- from pandas._libs.missing import checknull
- cdef inline bint is_definitely_invalid_key(object val):
- try:
- hash(val)
- except TypeError:
- return True
- return False
- # Don't populate hash tables in monotonic indexes larger than this
- _SIZE_CUTOFF = 1_000_000
- @cython.freelist(32)
- cdef class IndexEngine:
- cdef readonly:
- object vgetter
- HashTable mapping
- bint over_size_threshold
- cdef:
- bint unique, monotonic_inc, monotonic_dec
- bint need_monotonic_check, need_unique_check
- def __init__(self, vgetter, n):
- self.vgetter = vgetter
- self.over_size_threshold = n >= _SIZE_CUTOFF
- self.clear_mapping()
- def __contains__(self, val: object) -> bool:
- # We assume before we get here:
- # - val is hashable
- self._ensure_mapping_populated()
- return val in self.mapping
- cpdef get_loc(self, object val):
- # -> Py_ssize_t | slice | ndarray[bool]
- cdef:
- Py_ssize_t loc
- if is_definitely_invalid_key(val):
- raise TypeError(f"'{val}' is an invalid key")
- if self.over_size_threshold and self.is_monotonic_increasing:
- if not self.is_unique:
- return self._get_loc_duplicates(val)
- values = self._get_index_values()
- self._check_type(val)
- try:
- loc = _bin_search(values, val) # .searchsorted(val, side='left')
- except TypeError:
- # GH#35788 e.g. val=None with float64 values
- raise KeyError(val)
- if loc >= len(values):
- raise KeyError(val)
- if values[loc] != val:
- raise KeyError(val)
- return loc
- self._ensure_mapping_populated()
- if not self.unique:
- return self._get_loc_duplicates(val)
- self._check_type(val)
- try:
- return self.mapping.get_item(val)
- except (TypeError, ValueError, OverflowError):
- # GH#41775 OverflowError e.g. if we are uint64 and val is -1
- raise KeyError(val)
- cdef inline _get_loc_duplicates(self, object val):
- # -> Py_ssize_t | slice | ndarray[bool]
- cdef:
- Py_ssize_t diff
- if self.is_monotonic_increasing:
- values = self._get_index_values()
- try:
- left = values.searchsorted(val, side='left')
- right = values.searchsorted(val, side='right')
- except TypeError:
- # e.g. GH#29189 get_loc(None) with a Float64Index
- raise KeyError(val)
- diff = right - left
- if diff == 0:
- raise KeyError(val)
- elif diff == 1:
- return left
- else:
- return slice(left, right)
- return self._maybe_get_bool_indexer(val)
- cdef _maybe_get_bool_indexer(self, object val):
- # Returns ndarray[bool] or int
- cdef:
- ndarray[uint8_t, ndim=1, cast=True] indexer
- indexer = self._get_index_values() == val
- return self._unpack_bool_indexer(indexer, val)
- cdef _unpack_bool_indexer(self,
- ndarray[uint8_t, ndim=1, cast=True] indexer,
- object val):
- # Returns ndarray[bool] or int
- cdef:
- ndarray[intp_t, ndim=1] found
- int count
- found = np.where(indexer)[0]
- count = len(found)
- if count > 1:
- return indexer
- if count == 1:
- return int(found[0])
- raise KeyError(val)
- def sizeof(self, deep: bool = False) -> int:
- """ return the sizeof our mapping """
- if not self.is_mapping_populated:
- return 0
- return self.mapping.sizeof(deep=deep)
- def __sizeof__(self) -> int:
- return self.sizeof()
- @property
- def is_unique(self) -> bool:
- if self.need_unique_check:
- self._do_unique_check()
- return self.unique == 1
- cdef inline _do_unique_check(self):
- # this de-facto the same
- self._ensure_mapping_populated()
- @property
- def is_monotonic_increasing(self) -> bool:
- if self.need_monotonic_check:
- self._do_monotonic_check()
- return self.monotonic_inc == 1
- @property
- def is_monotonic_decreasing(self) -> bool:
- if self.need_monotonic_check:
- self._do_monotonic_check()
- return self.monotonic_dec == 1
- cdef inline _do_monotonic_check(self):
- cdef:
- bint is_unique
- try:
- values = self._get_index_values()
- self.monotonic_inc, self.monotonic_dec, is_unique = \
- self._call_monotonic(values)
- except TypeError:
- self.monotonic_inc = 0
- self.monotonic_dec = 0
- is_unique = 0
- self.need_monotonic_check = 0
- # we can only be sure of uniqueness if is_unique=1
- if is_unique:
- self.unique = 1
- self.need_unique_check = 0
- cdef _get_index_values(self):
- return self.vgetter()
- cdef _call_monotonic(self, values):
- return algos.is_monotonic(values, timelike=False)
- def get_backfill_indexer(self, other: np.ndarray, limit=None) -> np.ndarray:
- return algos.backfill(self._get_index_values(), other, limit=limit)
- def get_pad_indexer(self, other: np.ndarray, limit=None) -> np.ndarray:
- return algos.pad(self._get_index_values(), other, limit=limit)
- cdef _make_hash_table(self, Py_ssize_t n):
- raise NotImplementedError
- cdef _check_type(self, object val):
- hash(val)
- @property
- def is_mapping_populated(self) -> bool:
- return self.mapping is not None
- cdef inline _ensure_mapping_populated(self):
- # this populates the mapping
- # if its not already populated
- # also satisfies the need_unique_check
- if not self.is_mapping_populated:
- values = self._get_index_values()
- self.mapping = self._make_hash_table(len(values))
- self._call_map_locations(values)
- if len(self.mapping) == len(values):
- self.unique = 1
- self.need_unique_check = 0
- cdef void _call_map_locations(self, ndarray values):
- self.mapping.map_locations(values)
- def clear_mapping(self):
- self.mapping = None
- self.need_monotonic_check = 1
- self.need_unique_check = 1
- self.unique = 0
- self.monotonic_inc = 0
- self.monotonic_dec = 0
- def get_indexer(self, ndarray values) -> np.ndarray:
- self._ensure_mapping_populated()
- return self.mapping.lookup(values)
- def get_indexer_non_unique(self, ndarray targets):
- """
- Return an indexer suitable for taking from a non unique index
- return the labels in the same order as the target
- and a missing indexer into the targets (which correspond
- to the -1 indices in the results
- Returns
- -------
- indexer : np.ndarray[np.intp]
- missing : np.ndarray[np.intp]
- """
- cdef:
- ndarray values, x
- ndarray[intp_t] result, missing
- set stargets, remaining_stargets
- dict d = {}
- object val
- int count = 0, count_missing = 0
- Py_ssize_t i, j, n, n_t, n_alloc
- self._ensure_mapping_populated()
- values = np.array(self._get_index_values(), copy=False)
- stargets = set(targets)
- n = len(values)
- n_t = len(targets)
- if n > 10_000:
- n_alloc = 10_000
- else:
- n_alloc = n
- result = np.empty(n_alloc, dtype=np.intp)
- missing = np.empty(n_t, dtype=np.intp)
- # map each starget to its position in the index
- if stargets and len(stargets) < 5 and self.is_monotonic_increasing:
- # if there are few enough stargets and the index is monotonically
- # increasing, then use binary search for each starget
- remaining_stargets = set()
- for starget in stargets:
- try:
- start = values.searchsorted(starget, side='left')
- end = values.searchsorted(starget, side='right')
- except TypeError: # e.g. if we tried to search for string in int array
- remaining_stargets.add(starget)
- else:
- if start != end:
- d[starget] = list(range(start, end))
- stargets = remaining_stargets
- if stargets:
- # otherwise, map by iterating through all items in the index
- for i in range(n):
- val = values[i]
- if val in stargets:
- if val not in d:
- d[val] = []
- d[val].append(i)
- for i in range(n_t):
- val = targets[i]
- # found
- if val in d:
- for j in d[val]:
- # realloc if needed
- if count >= n_alloc:
- n_alloc += 10_000
- result = np.resize(result, n_alloc)
- result[count] = j
- count += 1
- # value not found
- else:
- if count >= n_alloc:
- n_alloc += 10_000
- result = np.resize(result, n_alloc)
- result[count] = -1
- count += 1
- missing[count_missing] = i
- count_missing += 1
- return result[0:count], missing[0:count_missing]
- cdef Py_ssize_t _bin_search(ndarray values, object val) except -1:
- cdef:
- Py_ssize_t mid = 0, lo = 0, hi = len(values) - 1
- object pval
- if hi == 0 or (hi > 0 and val > values[hi]):
- return len(values)
- while lo < hi:
- mid = (lo + hi) // 2
- pval = values[mid]
- if val < pval:
- hi = mid
- elif val > pval:
- lo = mid + 1
- else:
- while mid > 0 and val == values[mid - 1]:
- mid -= 1
- return mid
- if val <= values[mid]:
- return mid
- else:
- return mid + 1
- cdef class ObjectEngine(IndexEngine):
- """
- Index Engine for use with object-dtype Index, namely the base class Index.
- """
- cdef _make_hash_table(self, Py_ssize_t n):
- return _hash.PyObjectHashTable(n)
- cdef class DatetimeEngine(Int64Engine):
- cdef str _get_box_dtype(self):
- return 'M8[ns]'
- cdef int64_t _unbox_scalar(self, scalar) except? -1:
- # NB: caller is responsible for ensuring tzawareness compat
- # before we get here
- if not (isinstance(scalar, _Timestamp) or scalar is NaT):
- raise TypeError(scalar)
- return scalar.value
- def __contains__(self, val: object) -> bool:
- # We assume before we get here:
- # - val is hashable
- cdef:
- int64_t loc, conv
- conv = self._unbox_scalar(val)
- if self.over_size_threshold and self.is_monotonic_increasing:
- if not self.is_unique:
- return self._get_loc_duplicates(conv)
- values = self._get_index_values()
- loc = values.searchsorted(conv, side='left')
- return values[loc] == conv
- self._ensure_mapping_populated()
- return conv in self.mapping
- cdef _get_index_values(self):
- return self.vgetter().view('i8')
- cdef _call_monotonic(self, values):
- return algos.is_monotonic(values, timelike=True)
- cpdef get_loc(self, object val):
- # NB: the caller is responsible for ensuring that we are called
- # with either a Timestamp or NaT (Timedelta or NaT for TimedeltaEngine)
- cdef:
- int64_t loc
- if is_definitely_invalid_key(val):
- raise TypeError(f"'{val}' is an invalid key")
- try:
- conv = self._unbox_scalar(val)
- except TypeError:
- raise KeyError(val)
- # Welcome to the spaghetti factory
- if self.over_size_threshold and self.is_monotonic_increasing:
- if not self.is_unique:
- return self._get_loc_duplicates(conv)
- values = self._get_index_values()
- loc = values.searchsorted(conv, side='left')
- if loc == len(values) or values[loc] != conv:
- raise KeyError(val)
- return loc
- self._ensure_mapping_populated()
- if not self.unique:
- return self._get_loc_duplicates(conv)
- try:
- return self.mapping.get_item(conv)
- except KeyError:
- raise KeyError(val)
- def get_indexer_non_unique(self, ndarray targets):
- # we may get datetime64[ns] or timedelta64[ns], cast these to int64
- return super().get_indexer_non_unique(targets.view("i8"))
- def get_indexer(self, ndarray values) -> np.ndarray:
- self._ensure_mapping_populated()
- if values.dtype != self._get_box_dtype():
- return np.repeat(-1, len(values)).astype(np.intp)
- values = np.asarray(values).view('i8')
- return self.mapping.lookup(values)
- def get_pad_indexer(self, other: np.ndarray, limit=None) -> np.ndarray:
- if other.dtype != self._get_box_dtype():
- return np.repeat(-1, len(other)).astype(np.intp)
- other = np.asarray(other).view('i8')
- return algos.pad(self._get_index_values(), other, limit=limit)
- def get_backfill_indexer(self, other: np.ndarray, limit=None) -> np.ndarray:
- if other.dtype != self._get_box_dtype():
- return np.repeat(-1, len(other)).astype(np.intp)
- other = np.asarray(other).view('i8')
- return algos.backfill(self._get_index_values(), other, limit=limit)
- cdef class TimedeltaEngine(DatetimeEngine):
- cdef str _get_box_dtype(self):
- return 'm8[ns]'
- cdef int64_t _unbox_scalar(self, scalar) except? -1:
- if not (isinstance(scalar, _Timedelta) or scalar is NaT):
- raise TypeError(scalar)
- return scalar.value
- cdef class PeriodEngine(Int64Engine):
- cdef int64_t _unbox_scalar(self, scalar) except? -1:
- if scalar is NaT:
- return scalar.value
- if is_period_object(scalar):
- # NB: we assume that we have the correct freq here.
- return scalar.ordinal
- raise TypeError(scalar)
- cpdef get_loc(self, object val):
- # NB: the caller is responsible for ensuring that we are called
- # with either a Period or NaT
- cdef:
- int64_t conv
- try:
- conv = self._unbox_scalar(val)
- except TypeError:
- raise KeyError(val)
- return Int64Engine.get_loc(self, conv)
- cdef _get_index_values(self):
- return super(PeriodEngine, self).vgetter().view("i8")
- cdef _call_monotonic(self, values):
- return algos.is_monotonic(values, timelike=True)
- cdef class BaseMultiIndexCodesEngine:
- """
- Base class for MultiIndexUIntEngine and MultiIndexPyIntEngine, which
- represent each label in a MultiIndex as an integer, by juxtaposing the bits
- encoding each level, with appropriate offsets.
- For instance: if 3 levels have respectively 3, 6 and 1 possible values,
- then their labels can be represented using respectively 2, 3 and 1 bits,
- as follows:
- _ _ _ _____ _ __ __ __
- |0|0|0| ... |0| 0|a1|a0| -> offset 0 (first level)
- — — — ————— — —— —— ——
- |0|0|0| ... |0|b2|b1|b0| -> offset 2 (bits required for first level)
- — — — ————— — —— —— ——
- |0|0|0| ... |0| 0| 0|c0| -> offset 5 (bits required for first two levels)
- ‾ ‾ ‾ ‾‾‾‾‾ ‾ ‾‾ ‾‾ ‾‾
- and the resulting unsigned integer representation will be:
- _ _ _ _____ _ __ __ __ __ __ __
- |0|0|0| ... |0|c0|b2|b1|b0|a1|a0|
- ‾ ‾ ‾ ‾‾‾‾‾ ‾ ‾‾ ‾‾ ‾‾ ‾‾ ‾‾ ‾‾
- Offsets are calculated at initialization, labels are transformed by method
- _codes_to_ints.
- Keys are located by first locating each component against the respective
- level, then locating (the integer representation of) codes.
- """
- def __init__(self, object levels, object labels,
- ndarray[uint64_t, ndim=1] offsets):
- """
- Parameters
- ----------
- levels : list-like of numpy arrays
- Levels of the MultiIndex.
- labels : list-like of numpy arrays of integer dtype
- Labels of the MultiIndex.
- offsets : numpy array of uint64 dtype
- Pre-calculated offsets, one for each level of the index.
- """
- self.levels = levels
- self.offsets = offsets
- # Transform labels in a single array, and add 1 so that we are working
- # with positive integers (-1 for NaN becomes 0):
- codes = (np.array(labels, dtype='int64').T + 1).astype('uint64',
- copy=False)
- # Map each codes combination in the index to an integer unambiguously
- # (no collisions possible), based on the "offsets", which describe the
- # number of bits to switch labels for each level:
- lab_ints = self._codes_to_ints(codes)
- # Initialize underlying index (e.g. libindex.UInt64Engine) with
- # integers representing labels: we will use its get_loc and get_indexer
- self._base.__init__(self, lambda: lab_ints, len(lab_ints))
- def _codes_to_ints(self, ndarray[uint64_t] codes) -> np.ndarray:
- raise NotImplementedError("Implemented by subclass")
- def _extract_level_codes(self, ndarray[object] target) -> np.ndarray:
- """
- Map the requested list of (tuple) keys to their integer representations
- for searching in the underlying integer index.
- Parameters
- ----------
- target : ndarray[object]
- Each key is a tuple, with a label for each level of the index.
- Returns
- ------
- int_keys : 1-dimensional array of dtype uint64 or object
- Integers representing one combination each
- """
- level_codes = [lev.get_indexer(codes) + 1 for lev, codes
- in zip(self.levels, zip(*target))]
- return self._codes_to_ints(np.array(level_codes, dtype='uint64').T)
- def get_indexer(self, ndarray[object] target) -> np.ndarray:
- """
- Returns an array giving the positions of each value of `target` in
- `self.values`, where -1 represents a value in `target` which does not
- appear in `self.values`
- Parameters
- ----------
- target : ndarray[object]
- Each key is a tuple, with a label for each level of the index
- Returns
- -------
- np.ndarray[intp_t, ndim=1] of the indexer of `target` into
- `self.values`
- """
- lab_ints = self._extract_level_codes(target)
- return self._base.get_indexer(self, lab_ints)
- def get_indexer_with_fill(self, ndarray target, ndarray values,
- str method, object limit) -> np.ndarray:
- """
- Returns an array giving the positions of each value of `target` in
- `values`, where -1 represents a value in `target` which does not
- appear in `values`
- If `method` is "backfill" then the position for a value in `target`
- which does not appear in `values` is that of the next greater value
- in `values` (if one exists), and -1 if there is no such value.
- Similarly, if the method is "pad" then the position for a value in
- `target` which does not appear in `values` is that of the next smaller
- value in `values` (if one exists), and -1 if there is no such value.
- Parameters
- ----------
- target: ndarray[object] of tuples
- need not be sorted, but all must have the same length, which must be
- the same as the length of all tuples in `values`
- values : ndarray[object] of tuples
- must be sorted and all have the same length. Should be the set of
- the MultiIndex's values.
- method: string
- "backfill" or "pad"
- limit: int or None
- if provided, limit the number of fills to this value
- Returns
- -------
- np.ndarray[intp_t, ndim=1] of the indexer of `target` into `values`,
- filled with the `method` (and optionally `limit`) specified
- """
- assert method in ("backfill", "pad")
- cdef:
- int64_t i, j, next_code
- int64_t num_values, num_target_values
- ndarray[int64_t, ndim=1] target_order
- ndarray[object, ndim=1] target_values
- ndarray[int64_t, ndim=1] new_codes, new_target_codes
- ndarray[intp_t, ndim=1] sorted_indexer
- target_order = np.argsort(target).astype('int64')
- target_values = target[target_order]
- num_values, num_target_values = len(values), len(target_values)
- new_codes, new_target_codes = (
- np.empty((num_values,)).astype('int64'),
- np.empty((num_target_values,)).astype('int64'),
- )
- # `values` and `target_values` are both sorted, so we walk through them
- # and memoize the (ordered) set of indices in the (implicit) merged-and
- # sorted list of the two which belong to each of them
- # the effect of this is to create a factorization for the (sorted)
- # merger of the index values, where `new_codes` and `new_target_codes`
- # are the subset of the factors which appear in `values` and `target`,
- # respectively
- i, j, next_code = 0, 0, 0
- while i < num_values and j < num_target_values:
- val, target_val = values[i], target_values[j]
- if val <= target_val:
- new_codes[i] = next_code
- i += 1
- if target_val <= val:
- new_target_codes[j] = next_code
- j += 1
- next_code += 1
- # at this point, at least one should have reached the end
- # the remaining values of the other should be added to the end
- assert i == num_values or j == num_target_values
- while i < num_values:
- new_codes[i] = next_code
- i += 1
- next_code += 1
- while j < num_target_values:
- new_target_codes[j] = next_code
- j += 1
- next_code += 1
- # get the indexer, and undo the sorting of `target.values`
- algo = algos.backfill if method == "backfill" else algos.pad
- sorted_indexer = algo(new_codes, new_target_codes, limit=limit)
- return sorted_indexer[np.argsort(target_order)]
- def get_loc(self, object key):
- if is_definitely_invalid_key(key):
- raise TypeError(f"'{key}' is an invalid key")
- if not isinstance(key, tuple):
- raise KeyError(key)
- try:
- indices = [0 if checknull(v) else lev.get_loc(v) + 1
- for lev, v in zip(self.levels, key)]
- except KeyError:
- raise KeyError(key)
- # Transform indices into single integer:
- lab_int = self._codes_to_ints(np.array(indices, dtype='uint64'))
- return self._base.get_loc(self, lab_int)
- def get_indexer_non_unique(self, ndarray[object] target):
- lab_ints = self._extract_level_codes(target)
- indexer = self._base.get_indexer_non_unique(self, lab_ints)
- return indexer
- def __contains__(self, val: object) -> bool:
- # We assume before we get here:
- # - val is hashable
- # Default __contains__ looks in the underlying mapping, which in this
- # case only contains integer representations.
- try:
- self.get_loc(val)
- return True
- except (KeyError, TypeError, ValueError):
- return False
- # Generated from template.
- include "index_class_helper.pxi"
|